Simulation Reserch Status for the Stability of Bucket Foundation Breakwater

2014 ◽  
Vol 1065-1069 ◽  
pp. 513-517
Author(s):  
Xiao Long Ma ◽  
Zhi Yun Wang ◽  
Lin Ping Yu ◽  
Lu Shen

Abstract.Bucket foundation breakwater,which is a new port engineering structure, emerged in recent years, its simulation of stability in the use is a hot topic that many scholars have been working on. However, the affecting factors, different means of simulation and complex mechanism of contact between the foundation bucket and foundation soil leads to its associated stability simulation test data relative dispersion ,so it has not come to a united analysis and summary. This article mainly from centrifugal model test, finite element numerical simulation discussed briefly the simulation reserch status for the stability of bucket foundation breakwater respectively. It draws some valuable experience and the direction which is likely to continue to deepen research in the future.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongcheng Qin ◽  
Bin Cao ◽  
Tan Li ◽  
Xin Yu ◽  
Guangbo Chen

In this paper, two methods of orthogonal numerical simulation test and similar material simulation test are used to study the influence of five factors on the stability of rectangular roadway: roadway width, roadway height, roadway buried depth, lateral pressure coefficient of surrounding rock, and comprehensive strength of surrounding rock. The results show that five factors have influence on the stability of roadway, but the degree of influence is different. The depth of the tunnel and the coefficient of the side pressure of the surrounding rock are positively correlated with the stability of the tunnel; the comprehensive strength of the surrounding rock is negatively correlated with the stability of the tunnel, but the correlation between the width and height of the tunnel and the stability of the tunnel is not obvious. The results of orthogonal numerical simulation test and similar material simulation test verify each other. The results of the field practice of the Fucun coal mine are basically consistent with the results of the two test methods, which shows that the research results have a certain guiding effect on the field roadway support.


2017 ◽  
Vol 23 (1) ◽  
pp. 15-27
Author(s):  
Chung-Won LEE ◽  
Yong-Seong KIM ◽  
Sung-Yong PARK ◽  
Dong-Gyun KIM ◽  
Gunn HEO

Centrifugal model testing has been widely used to study the stability of levees. However, there have been a limited number of physical studies on levees where the velocity of increasing water levels was considered. To investigate the behavior characteristics of reservoir levees with different velocities of increasing water levels, centrifugal model tests and seepage-deformation coupled analyses were conducted. Through this study, it was confirmed that increasing water levels at higher velocities induces dramatic increases in the displacement, plastic volumetric strain and risk of hydraulic fracturing occurring in the core of the levee. Hence, real-time monitoring of the displacement and the pore water pres­sure of a levee is important to ensure levee stability.


2019 ◽  
Vol 9 (12) ◽  
pp. 2557
Author(s):  
Haoliang Lv ◽  
Xiaojun Zhou ◽  
Chenglong Yang ◽  
Zhe Wang ◽  
Yimeng Fu

The load simulation test bench plays an important role in tracked vehicle development. The stability and accuracy of the system have a vital impact on the experimental results. To accurately reproduce the power performance of a tracked vehicle on the test platform, this paper aims to investigate the model, control, and calibration method of the test bench. Firstly, the dynamic model of a tracked vehicle under complex driving conditions is analyzed and established, which takes driving torque as the input and driving wheel speed as the output. Then, considering the uncertainties and disturbances in the system model, a 2-degree-of-freedom (2-DOF) control method combined with a disturbance observer is proposed to solve the stability problem of the system. Furthermore, in order to investigate the accuracy of the simulation on the test bed, a method of calibrating the system by a flywheel set with standard inertia is proposed. In the calibration process, the influence of the system resistance torque and the original mechanical inertia on the results is considered, and the response time of the inertia simulation is analyzed in both a steady and dynamic state. Finally, the load simulation test is carried out with the corrected system. The test results show that the system has a high load simulation accuracy under various load simulation tests.


2011 ◽  
Vol 90-93 ◽  
pp. 222-229
Author(s):  
Wei Bing Zhang ◽  
Lian Tang

In view of the settlement problem of high loess-filled embankments themselves, with the reference of the 30m high embankment at K5 +536 of Lan Lin provincial expressway and by means of the centrifugal model test, the developing process of the settlement for embankment itself with time in different sections of embankment and the distribution laws of the settlement subjected from spatial effect in case of the different terrain conditions are studied. Compared with the actual measurement, the results show that: as far as the settlement of high-filled embankment itself is concerned, the settlement at the central part along the cross-section of embankment is larger than that at shoulder; When the stability of embankment is relatively poor because of the bigger slope ratio or faster speed of construction, the settlement at the shoulder caused by the lateral extrusion from the edge of embankment is larger; The settlement of embankment itself is approximately 0.5% -1% of the height of embankment, about 75% -85% of which occurred during the construction period and the remaining 15% -25% belongs to after construction. Furthermore, the 85% of the settlement belong to after construction will be completed within a year and about two years later the settlement tend to be stable; Owing to the affection of the spatial effect due to the valley terrain conditions, the settlement near the joint sites between the embankment and the gully is larger than that occurred in gentle slope and the central part of embankment. During the time of designing and construction for high-filled embankment, the location where the settlement influenced by the lateral extrusion and spatial effect should be paid attention to, so that, the security and stability of the embankment could be ensured.


2011 ◽  
Vol 120 ◽  
pp. 263-268
Author(s):  
Shi Jiao Yang ◽  
Hui Luo ◽  
Jian Yong Dai ◽  
Chang Zhen Wu

Panel mining requires constructing lots of artificial pillars in underground metal mines. Along with the development of the mining process the stress-strain state of pillars changes constantly. Finite element numerical simulation with Midas/GTS software is used to analyze the stability of the pillar during the entire process of panel mining and consider randomness and fuzziness for material parameters of concrete and ore rock to get stress distribution in the pillar. In this paper, the performance function and equation of dynamic fuzzy reliability for a pillar in the whole mining process are established and are solved by a program developed with the MATLAB software. Applying the proposed theory and procedures to dynamic fuzzy reliability analysis and calculation of the pillar was set in panel mining under complex conditions in Zhao Tong Lead-Zinc mine. The results indicate that dynamic fuzzy reliability can better reflect the pillar stability during the entire process of panel mining and the proposed theory and procedures are effective in evaluating the dynamic fuzzy reliability.


2015 ◽  
Vol 724 ◽  
pp. 144-147
Author(s):  
Fu Liang Jiang ◽  
Zeng Guang Yang ◽  
Guo Hui Li ◽  
Sheng Yang Feng ◽  
Bo Lei

In order to intensively study the stability influencing factors of rockfill dam slope in tailing pond, it was simplified to the common rock slope. And the data of 45 groups of circular failure slope was collected, based on the discrete normalization, the condition attributes of influencing stability were reduced by Rough Set theory (RS), at the same time, the stability influencing factors were simplified by Principal Component Analysis (PCA). Combining the two results through the above two methods, the main affecting factors of the rockfill dam slope’s stability are: rock density, slope angle and the angle of internal friction. The study conclusion can provide the decision-making basis for the rockfill dam design and safety management, and also be used as the foundation for other intelligent algorithm to predict the dam safety coefficient.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yuanxu Jing ◽  
Yuan Wang ◽  
Jingqi Huang ◽  
Wei Wang ◽  
Lunbo Luo

The composite bucket foundation of offshore wind turbines is subjected to a variety of loads in the marine environment, such as horizontal load H, vertical load V , bending moment M, and torque T. In addition, due to the characteristics of its connection section, the water flow around the foundation will produce scour pits of various degrees, reducing the depth of the bucket foundation, which has a nonnegligible impact on the overall stability of the bucket foundation. In this paper, the failure envelope characteristics of different combinations of loads on bucket foundations, including V -H-T, V -M-T, conventional V -H-M, and noncoplanar V -H-M, are numerically investigated with considering different scour depths. The numerical results indicate that the V -H-T, V -M-T, conventional V -H-M, and noncongruent V -H-M failure envelopes gradually shrink inwards with increasing scour depth, and the stability of the composite bucket foundation decreases; the conventional V -H-M failure envelope shows an asymmetry of convexity to the right, and the noncongruent V -H-M failure envelope shows an asymmetry of outward convexity to the left and right. The corresponding mathematical expressions for the failure envelope are obtained through the normalized fitting process, which can be used to evaluate the stability of the bucket foundation based on the relative relationship between the failure envelope and the actual load conditions, which can provide practical guidance for engineering design.


2020 ◽  
Author(s):  
Nassima Bakir ◽  
Khelifa Abbeche ◽  
Gérard Panczer ◽  
Larbi Belagraa

Soil collapse remains a major issue affecting structural foundations, particularly in arid and semi-arid zones where humidification is a key factor contributing to the collapse. Much research has been devoted to identifying treatment methods which enhance the stability and load-bearing capacity of this type of soil. This paper investigates the potential advantages of the addition of milled glass fibers (Fg ). Soil samples were prepared at different compaction energies and various water contents, then treated with different percentages of milled glass fiber, before being submitted to the simple consolidation odometer test. The results obtained in this study showed that soil samples treated with an optimal dosage of 6% of milled glass fibers compacted at 60 blows and humidified at 6% of moisture content. This represents an improvement in the stability of the soil, reducing the collapse potential (Cp) from 11.95% to 1.62%. This treatment method produces soil which can be classified as a moderate risk foundation soil according to the Jennings and Knight evaluation metrics (1975). Keywords: collapsible soils, arid zones, fiberglass, odometer test.


Author(s):  
Dongmei Huang ◽  
Weijun Li ◽  
Xikun Chang ◽  
Yunliang Tan

In order to evaluate the stability of deep surrounding rock, all of the affecting factors should be theoretically identified. However, some factors have slight impacts on the stability of deep surrounding rock compared with others. To conduct an effective risk assessment, key factors should be first extracted. The analytic hierarchy process (AHP) and grey relation analysis (GRA) methods are integrated to determine the key factors. First, the AHP method is applied to sort the factors by calculating the weights of them. Seven out of fifteen factors are extracted as the key factors, which account for 80% of the weights. Further, the GCA method is used to validate the effects of these key factors by analyzing the correlation between the performance of each factor and that of the reference. Considering the influence of these key factors and experts’ judgements, the multilevel fuzzy comprehensive evaluation method is adopted to obtain the risk level of the deep surrounding rock stability. Finally, the risk assessment of the deep surrounding rock in the E-Zhuang coal mine of Chinese Xinwen Mining Area illustrates the operability of the proposed method.


2018 ◽  
Vol 162 ◽  
pp. 04014 ◽  
Author(s):  
Amr Abdelrahman ◽  
Mohamed Tawfik ◽  
A. El-Saify

In Egypt, where highway bridges are to be constructed on soft cohesive soils, the bridge abutments are usually founded on rigid piles, whereas the earth embankments for the bridge approaches are directly founded on the natural soft ground. Consequently, excessive differential settlement frequently occurs between the bridge deck and the bridge approaches resulting in a “bump” at both ends of the bridge deck. Such a bump not only creates a rough and uncomfortable ride but also represents a hazardous condition to traffic. One effective technique to cope with the bump problem is to use a reinforced concrete approach slab to provide a smooth grade transition between the bridge deck and the approach pavement. Investigating the geotechnical and structural performance of approach slabs and revealing the fundamental affecting factors have become mandatory. In this paper, a 2-D finite element model is employed to investigate the performance of approach slabs. Moreover, an extensive parametric study is carried out to appraise the relatively optimum geometries of approach slab, i.e. slab length, thickness, embedded depth and slope, that can yield permissible bumps. Different geo-mechanical conditions of the cohesive foundation soil and the fill material of the bridge embankment are examined.


Sign in / Sign up

Export Citation Format

Share Document