Higher Photocatalytic Activity of P-Incorporated TiO2 Nanotube Arrays

2015 ◽  
Vol 1087 ◽  
pp. 452-456
Author(s):  
Khairul Arifah Saharudin ◽  
Srimala Sreekantan

TiO2 nanotubes arrays were prepared by anodization of Ti in EG containing H3PO4 and NH4F electrolyte. The samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and photoluminescence spectra (PL). The as-anodized TiO2 nanotubes were annealed in inert (argon), reducing (nitrogen), or oxidizing (oxygen) atmosphere at 400 °C for 4 hr. XRD analysis revealed that the TiO2 nanotubes were anatase after annealing. In this study, the TiO2 nanotubes annealed in argon exhibited the highest degradation rate of methyl orange (MO) solution under ultraviolet irradiation among the samples. The degradation rate was approximately 98% after 5h, which may be ascribed to the large amount of oxygen vacancies and defects (phosphorus) within the Ar - TiO2 sample that simultaneously increased the degradation rate of MO.

2018 ◽  
Vol 769 ◽  
pp. 29-34 ◽  
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Adelya A. Kashimbetova

The effect of Nb content on microstructure, mechanical properties and phase formation in annealed and quenched binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 0-37 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 14 mass % and stable BCC β phase at higher contents of Nb. The structure of the quenched samples changed with increase of Nb content in the following order: coarse primary martensite → fine acicular (α`+α``) martensite → single β phase structure. The mechanical properties of alloys strongly depended on the Nb content and type of the dominating phase.


2005 ◽  
Vol 865 ◽  
Author(s):  
Marit Kauk ◽  
Mare Altosaar ◽  
Jaan Raudoja ◽  
Kristi Timmo ◽  
Maarja Grossberg ◽  
...  

AbstractCuInSe2 monograin powders (MGP) were synthesized from Cu-In alloys of different Cu/In concentration ratios and elemental Se in liquid phase of flux material in evacuated quartz ampoules. The surface morphology, phase structure, and composition of the powder crystals were analyzed by scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis respectively. Bulk composition was analyzed polarographically. Photoluminescence spectra were measured at 9 K. It was found that the composition of MGP material (Cu/In concentration ratio) can be controlled by the concentration ratio of precursor Cu-In alloys. Single phase CuInSe2 growth is realisable between 0.7<Cu/In<1 at the growth temperature of 1000 K. Photoluminescence spectra of near-stoichiometric materials had one dominant peak at 0.93 eV, which is typical to In-rich CuInSe2. Samples with high In content exhibited two broad bands with peak positions at 0.86 and 0.93 eV.


2016 ◽  
Vol 19 (3) ◽  
pp. 145-150 ◽  
Author(s):  
Meysam Karimi ◽  
Mohammad Rabiee ◽  
Mojgan Abdolrahim ◽  
Mohammadreza Tahriri ◽  
Daryoosh Vashayee ◽  
...  

We present a study of the effect of graphene–PANI nanocomposites on the sensitivity of the urea and glucose multisensory. We used an electroctrochemical multisensor based on two electrodes located in a reservoir with two separate channels. The urease and glu-cose oxidase (GOD) were employed for detecting the urea and glucose, respectively. We characterized the graphene and graphene-PANI samples with X-ray Diffraction (XRD) analysis and scanning electron microscopy (SEM) observations. We further performed the Cyclic voltammetry and Amperometry tests. The collected experimental results revealed that the intensity of the peak significantly increases with the concentration of the urea and glucose.


2012 ◽  
Vol 624 ◽  
pp. 63-66
Author(s):  
Ming Ya Li ◽  
Jian Min Wang ◽  
Jing Guo ◽  
Yue Liu Li ◽  
Xiao Qiang Wang

Highly Ordered arrays of TiO2 nanotubes on Ti wire were prepared by anodic oxidation with ethylene glycol solution of NH4F electrolyte. The phase compositions of the samples were characterized using X-ray diffraction (XRD) analysis using Cu-Kα radiation. The microstructure was observed using scanning electron microscopy (SEM). Experimental results show that at the anode condition of 95V, 50°C, and then themal treatment at 550°C, the highly ordered anatase TiO2 nanotubes arrays arranged on the surface of Ti wire. The length of the nanotube achieved was about 31μm, the internal diameter and outer diameter of the nanotube was 127nm and 170nm, respectively.


2016 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Sestry Misfadhila ◽  
Evi Adhelina ◽  
Yestria Rilda ◽  
Syukri Arief ◽  
Zulhadjri Zulhadjri

<p>Synthesis of four-layered Aurivillius compound doped with Nd<sup>3+</sup> and Mn<sup>4+ </sup>cations, SrBi<sub>3.5</sub>Nd<sub>0.5</sub>Ti<sub>4-x</sub>Mn<sub>x</sub>O<sub>15</sub> (<em>x</em> = 0; 0.5; 1) was carried out using molten salt method with a mixture of Na<sub>2</sub>SO<sub>4</sub>/K<sub>2</sub>SO<sub>4</sub> as a flux. The synthesized products were characterized using X-ray diffraction (XRD) and refined by <em>Le Bail</em> technique. The results of XRD analysis show that the four-layered Aurivillius compound formed, however there are additional peaks identified as perovskite and Bi<sub>7.68</sub>Ti<sub>0.32</sub>O<sub>12.16</sub>  phases for <em>x</em> = 0 and perovskite and Sr<sub>4</sub>Ti<sub>3</sub>O<sub>10</sub>phases for <em>x</em> = 0.5 and 1. The results of refinement show that four-layered Aurivillius phase formed has orthorhombic symmetry with <em>A2<sub>1</sub>am</em> space group. Scanning Electron Microscopy (SEM) shows the plate like morphology that are characteristic of Aurivillius compound. Dielectric constant of the samples show increasing value as increasing of Mn<sup>4+</sup> concentration.</p>


2011 ◽  
Vol 213 ◽  
pp. 543-547
Author(s):  
Jin Ling Ye ◽  
Feng Ye

Effects of plasma nitriding on low temperature salt-bath chromizing of W18Cr4V steel is studied .The chromizing process is investigated by means of optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffraction (XRD). Results show that the specimens are chromized successfully by low temperature salt-bath subjected to plasma nitriding. A chromized layer with average 3.3μm in thickness and 1200HV-1300HV in microhardness is formed on the substrate by chromizing at 610°C for 6h. XRD analysis show that the chromized layer is composed of Cr23C6, CrN, Cr/Fe, (Cr, Fe)7C3 , (Cr, Fe)2N and the surface chromium concentration reaches 77.67%.


2015 ◽  
Vol 1731 ◽  
Author(s):  
Carlo Requião da Cunha ◽  
Fábio Dias da Silva ◽  
Renzo Morales

ABSTRACTTin oxide aerogels were synthesized using the epoxide-assisted technique and characterized with X-ray diffraction, diffusive reflectance spectroscopy, particle-induced X-ray emission and scanning electron microscopy. Our results indicate that the material is electrically semi-insulating as the result of oxygen vacancies that appear as fixed charges at the bottom of the conduction band. A modification of the technique with the addition of hydrogen peroxide is proposed to reduce the levels of defects and enhance the optical transparency of the material.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 820
Author(s):  
Runqing Liu ◽  
Qilin Zhai ◽  
Chen Wang ◽  
Xiong Li ◽  
Wei Sun

Cu is the most important component in Cu slag, which is usually recovered by flotation. However, the crystalline state of Cu slag is not conducive to flotation, which limits the recovery of Cu. This study investigated the effect of Na2CO3 on the crystalline state of Cu slag and the recovery of Cu by flotation. The mechanism was investigated by thermodynamic, viscosity, X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM). The results of thermodynamic, viscosity and XRD analysis demonstrate that Na2CO3 is beneficial for the transformation of fayalite to low-melting point materials, such as Na2SiO3, Na4SiO4 and NaFeSi3O6, thereby reducing the viscosity of Cu slag. Moreover, SEM results indicate that the addition of Na2CO3 during the melting modification process can promote the aggregation of Cu-bearing minerals and simplify its intercalation relationship with gangue minerals. The flotation results verify the above conclusions that at 10% Na2CO3, the Cu flotation recovery index is the best. Compared with that without Na2CO3, the use of Na2CO3 has resulted in increased Cu grade and recovery by 3.544% and 28.94%, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Xiao Wang ◽  
Xiaoxing Wei ◽  
Caixia Song

Semimetal Bi and Sb thin films with novel hierarchical structures were synthesized on zinc substrate via a hydrothermal method. X-ray diffraction (XRD) analysis confirmed the formation of pure semimetals Bi and Sb. Scanning electron microscopy images showed that Bi films constructed with microtube arrays and hierarchical microspheres can be obtained selectively by altering the concentration of Bi3+ions. The synthesized Sb films were constructed with bowl-shaped particles. The growth process of these semimetal architectures was briefly discussed.


2013 ◽  
Vol 275-277 ◽  
pp. 1798-1801
Author(s):  
Qiang Wu ◽  
Li Zhao

Uniform growth of WO3 with macroscopic structures was successfully achieved by using carbon nanofibers (CNFs) as template. Field emission scanning electron microscopy (FE-SEM), coupled with X-ray diffraction (XRD) analysis confirmed the template effect and the existence of WO3 immobilized on the macroscopic silica fiber.


Sign in / Sign up

Export Citation Format

Share Document