Optimization of the Coagulation Process for Kaolin and Humic Acid Removal Using Polymeric Aluminum Ferric Sulfate

2015 ◽  
Vol 1088 ◽  
pp. 353-357 ◽  
Author(s):  
Zhen Zhen Jiang ◽  
Yang Chen ◽  
Jun Ren Zhu

In the paper, the optimization of the coagulation process for Kaolin and humic acid removal using polymeric aluminum ferric sulfate (PAFS) was studied. In order to obtain the maximum turbidity and humic acid removal efficiency of Kaolin and humic acid simulated wastewater, the optimum coagulation conditions was investigated with the factors of mixing speed and time. Furthermore, mixing speed and time including parameters affecting the coagulation performance such as rapid mixing speed, rapid mixing time, slow mixing speed and slow mixing time using single factor and orthogonal array L9 (34) analysis were examined. The results showed that the optimum single factor of mixing speed and time indicated rapid mixing speed of 350 rpm, rapid mixing time of 1.0 min, slow mixing speed of 60 rpm and slow mixing time of 20 min. Then the orthogonal optimization experiment of mixing speed and time indicated maximum HA removal efficiency was 97.5% at rapid mixing speed of 350 rpm, rapid mixing time of 1.25 min, slow mixing speed of 60 rpm, and slow mixing time of 20 min.

2021 ◽  
pp. 0734242X2110127
Author(s):  
Zaber Ahmed ◽  
Mohd Suffian Yusoff ◽  
Nurul Hana Mokhtar Kamal ◽  
Hamidi Abdul Aziz

The removal of concentrated colour (around 5039 Pt–Co) and chemical oxygen demand (COD; around 4142 mg L−1) from matured landfill leachate through a novel combination of humic acid extraction and coagulation with natural oil palm trunk starch (OPTS) was investigated in this study. Central composite design from response surface methodology of Design Expert-10 software executed the experimental design to correlate experimental factors with desired responses. Analysis of variance developed the quadratic model for four factors (e.g. coagulant dosage, slow mixing speed and time and centrifugation duration) and two responses (% removal of colour, COD). The model confirmed the highest colour (84.96%) and COD (48.84%) removal with a desirability function of 0.836 at the optimum condition of 1.68 g L−1 coagulant dose, 19.11 rpm slow mixing speed, 16.43 minutes for mixing time and 35.75 minutes for centrifugation duration. Better results of correlation coefficient ( R2 = 0.98 and 0.96) and predicted R2 (0.94 and 0.84) indicates the model significance. Electron microscopic images display the amalgamation of flocs through bridging. Fourier transforms infrared spectra confirmed the existence of selected organic groups in OPTS, which eventually signifies the applied method.


2015 ◽  
Vol 802 ◽  
pp. 478-483 ◽  
Author(s):  
Mohd Faiz Muaz Ahmad Zamri ◽  
Mohd Suffian Yusoff ◽  
Hamidi Abdul Aziz ◽  
Mohd Anuar Kamaruddin

In this research, a physico-chemical treatment method of coagulation-flocculation process is implemented in treating partially stabilized leachate from Matang Landfill, Perak, Malaysia. Central composite design has been used to optimize the independent variables namely polyaluminum chloride (PAC) coagulant dosage (A), rapid mixing speed (B) and rapid mixing time (C). The experimental results were analyzed by using analysis of variance (ANOVA). The results revealed that the percentage of color and COD removal was found increased by increasing rapid mixing speed with optimum removal of 95 % and 56 % respectively. Besides, the R-squared values implied that 86.22 % and 97.34% of the total variation explained by the model equation. Furthermore, the model analysis revealed that rapid mixing speed were significant for removal of color and COD through single parameter (B) and interaction between parameter (AB) respectively. This finding proves the influence of mixing parameter in coagulation-flocculation process for leachate treatment.


2019 ◽  
Vol 79 (7) ◽  
pp. 1263-1275
Author(s):  
H. Momtazpour ◽  
S. Jorfi ◽  
T. Tabatabaie ◽  
A. A. Pazira

Abstract This study aimed to investigate the effect of sodium ferrate synthesized from industrial effluents (SF-W) and that of synthetized from analytical grade chemicals (SF-O) on total organic carbon (TOC) removal from surface water. Response surface methodology (RSM) was used to optimize the operating variables such as pH, dosing rate, rapid mixing time, and gentle mixing speed on TOC removal. A TOC removal of 89.805% and 79.79% was observed for SF-O and SF-W, respectively. Ferrate as SF-O and SF-W demonstrated 26.67% and 8.51% more TOC removal at a lower dosage compared to conventional chemicals such as chlorine, ozone, poly aluminum chloride (PAC) and polyelectrolyte. The optimum conditions of the independent variables including sodium ferrate (SF-O and SF-W), pH, rapid mixing time and gentle mixing speed were found to be 1.54 mg/L and 2.68 mg/L, 8.5, 30 s at 120 rpm for coagulation followed by 20 min of gentle mixing. Economic analysis showed that the application of SF instead of conventional chemicals provides a significant reduction in operational costs by about 68%, mainly because of the reduction of chemicals and energy consumption.


2014 ◽  
Vol 567 ◽  
pp. 116-121 ◽  
Author(s):  
Amirhossein Malakahmad ◽  
Sim Yeong Chuan ◽  
Mahdieh Eisakhani

Typically, palm oil mill industries use conventional anaerobic ponds for treatment of palm oil mill effluent (POME). But, this method alone cannot produce effluent discharge to an allowable limits set by the authorities. This study aimed to investigate further treatment of anaerobically digested POME (COD = 682±14 mgL-1, TSS = 29±7 mgL-1 and turbidity = 106±3 NTU) by coagulation-flocculation process. Alum, an industrial-accepted coagulant and OC 100 and PC 100W as two industrial-based polymeric flocculants were used in coagulation-flocculation process. Results indicate coagulation process in its optimum conditions (pH = 6, alum dosage = 1800 mgL-1, rapid mixing = 5 min, and slow mixing = 20 min) reduces the COD, TSS and turbidity by 59%, 80% and 86%, respectively. Flocculants OC 100 and PC 100W caused further reduction of TSS (85–88%) and turbidity (97–98%). By application of post treatment, the POME characteristics reached to an acceptable discharge level enforced by Malaysian department of environment (DOE).


Author(s):  
Yanmei Ding ◽  
Jianhai Zhao ◽  
Lei Wei ◽  
Wenpu Li ◽  
Yongzhi Chi

Magnesium hydroxide continuous coagulation process was used for treating simulated reactive orange wastewater in this study. Effects of mixing conditions and retention time on the coagulation performance and floc properties of magnesium hydroxide were based on the floc size distribution (FSD), zeta potential and floc morphology analysis. Floc formation and growth in different reactors were also discussed.The results showed that increasing rapid mixing speed led to a decrease in the final floc size. Floc formation process was mainly carried out in rapid mixer, rapid mixing speed of 300rpm was chosen according to zeta potential and removal efficiency. Reducing retention time caused relatively small floc size in all reactors. When influent flow is 30 L/h (retention time of 2min in rapid mixer), the average floc size reached 8.06μm in rapid mixer, through breakage and re-growth, the floc size remained stable in flocculation basin. After growth, the final floc size reached to 11.21μm in sedimentation tank. The removal efficiency of reactive orange is 89% in magnesium hydroxide coagulation process.


2019 ◽  
Vol 9 (5) ◽  
pp. 973
Author(s):  
Yanmei Ding ◽  
Jianhai Zhao ◽  
Lei Wei ◽  
Wenpu Li ◽  
Yongzhi Chi

Magnesium hydroxide continuous coagulation process was used for treating simulated reactive orange wastewater in this study. Effects of mixing conditions and retention time on the coagulation performance and floc properties of magnesium hydroxide were based on the floc size distribution (FSD), zeta potential, and floc morphology analysis. Floc formation and growth in different reactors were also discussed. The results showed that increasing rapid mixing speed led to a decrease in the final floc size. The floc formation process was mainly carried out in a rapid mixer; a rapid mixing speed of 300 rpm was chosen according to zeta potential and removal efficiency. Reducing retention time caused a relatively small floc size in all reactors. When influent flow was 30 L/h (retention time of 2 min in rapid mixer), the average floc size reached 8.06 μm in a rapid mixer; through breakage and re-growth, the floc size remained stable in the flocculation basin. After growth, the final floc size reached 11.21 μm in a sedimentation tank. The removal efficiency of reactive orange is 89% in the magnesium hydroxide coagulation process.


2012 ◽  
Vol 610-613 ◽  
pp. 1784-1788
Author(s):  
Liu Yang ◽  
Li Zhao ◽  
Peng Yu Liu ◽  
Zong Shuo Li ◽  
Qing Chang

The removal of perfluorooctanoate (PFOA) and turbidity from model solution by coagulation was investigated. A polyaluminum chloride (PACl) was used as a coagulant in the coagulation process. The effects of coagulant dose, slow mixing time, solution pH value and initial turbidity on the removal of both PFOA and turbidity from water were studied. It was found that the removal rate of PFOA in water increase along with the increase in slow mixing time, initial turbidity and PAC dose. The removal rate of PFOA is more effective at the near neutral solution pH values and the high initial turbidity. The removal percents of PFOA exceed 80% at the optimal condition. The removal mechanism was speculated to be the electrostatic interaction and hydrophobic interaction in coagulation process.


2014 ◽  
Vol 15 (2) ◽  
pp. 339-347
Author(s):  
Peixia Cheng ◽  
Fei Ge ◽  
Xingwang Liu ◽  
Xiaoshuang Zeng ◽  
Biao Chen

Coagulation removal of algae in raw water could be significantly affected by humic acid (HA). A series of jar-tests were conducted to investigate the coagulation performance with polyaluminum chloride and floc properties of Microcystis aeruginosa, a unicellular cyanobacteria, in the presence of HA. Meanwhile the coagulation mechanism was explored through the measurement of zeta potential of the supernatant. The results showed that an optimal removal efficiency of chlorophyll-a (Chl-a) was obtained at pH 8.0 with a low concentration of HA (2 mg/L) and at pH 6.0 with a high concentration of HA (8 mg/L). The floc structure was more compact and bigger-sized and the calculated fractal dimension (Df) was larger at maximum coagulation efficiency. The variation of Df was consistent with that of Chl-a removal efficiency under the same coagulation conditions. Charge neutralization was inferred to be the dominant mechanism to remove algal cells with low concentration of HA, while charge neutralization, gathering and the bridging process worked together to remove algal cells with a high concentration of HA. These results provide insight on how to achieve an optimal removal efficiency of algae in the presence of different concentrations of HA in water treatment.


2019 ◽  
Vol 11 (2) ◽  
pp. 246-255 ◽  
Author(s):  
Hatem Asal Gzar ◽  
Noor Qassim Sabri

Natural materials that are readily available in large amounts in nature and easily accessible may be used as low cost additives. The aim of this study is to measure the susceptibility of these locally available materials, conocarpus plant, to improve the quality of wastewater discharged from textile industry.  In addition to conocarpus plant, carbonized conocarpus and activated carbon were used as adsorbents in order to make a comparison, and to test which one of the three types give the best efficiency for removing dye. The ability of adsorbents to adsorb dye was studied using batch system; studied parameters were effect of pH, dose of adsorbents, time, and agitation speed. The experimental results showed that the maximum removal efficiency of conocarpus was found to be 87.5% at 50 rpm mixing speed, pH value 3 , mixing time 120 min and the dose of adsorbent was 0.25 g.  The maximum removal efficiency for carbonized conocarpus was up to 98.7% at 150 rpm mixing speed, pH value 3 , mixing time was equal to 7 hours and the dose of sorbent was 1.25 g. For activated carbon the maximum removal efficiency was found to be 99% at mixing speed of 200 rpm, pH value 3 or 11, mixing time was equal to 7 hours and the dose of the sorbent was 1.25 g. The above removal efficiencies were obtained at temperature 20 °C.


Sign in / Sign up

Export Citation Format

Share Document