Dry Sliding Wear Resistance of the In Situ Al2O3/Al-Si Composites Fabricated in Al-SiO2 by Reaction Hot Pressing

2015 ◽  
Vol 1104 ◽  
pp. 155-161 ◽  
Author(s):  
El Oualid Mokhnache ◽  
Gui Song Wang ◽  
Lin Geng

The dry sliding characteristics of three in situ Al2O3/Al-Si composites fabricated with volume fraction of 10, 20 and 30 vol.% were investigated. The effect of sliding parameters on the wear properties was investigated. As the sliding velocity increases the wear loss decreases systematically. When the volume fraction increased to 20 vol.%, an improvement of wear resistance was obtained. However, when the volume fraction was 30 vol.%, a further decrease of wear resistance was observed. In case of low volume fraction (10 vol.%), an extensive plastic deformation by plowing out the ductile Al matrix along with narrow grooves was observed. As the volume fraction increased to 20 vol.%, the abrasive wear by micro grooving is dominant as well as the low load is used. Whereas, when the volume fraction increased to 30 vol.%, besides the effect of large pores, the embedded Al2O3 in the massive Si blocks formed a weaker interface thereby behaving as source of crakes initiation and propagation. As result, fracture, micro-cutting and delaminating are observed as dominant abrasive wear mechanisms

2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Qingliang Wang ◽  
Li Meng ◽  
Hui Chen ◽  
Qihao Zheng

Abstract This work reports on the sliding wear properties of Fe3Al-based alloy in conditions of dry sliding and quartz sand abrasion. The wear strengthening mechanism is also analyzed in detail. On this basis, the feasibility of using Fe3Al-based alloy instead of 42CrMo steel to make the wear-resistant scraper components in scraper conveyor is discussed. The results show that the wear mass loss and wear-rate of Fe3Al-based alloy are significantly lower than 42CrMo steel in dry sliding wear and abrasion by quartz sand, which indicates good sliding wear resistance. The wear resistance of Fe3Al-based alloy can be attributed to the grain boundary strengthening caused by the carbide precipates, dislocation fine-grained strengthening, and hard phase strengthening of Al2O3 in the wear surface. Compared with quenched and tempered 40CrMo steel, the lower density of Fe3Al-based alloy can reduce the weight of scraper components by about 15%, and the lower matrix hardness can reduce the wear loss of middle groove and scraper chain. The hardening effect of the worn surface layer can effectively improve the sliding wear resistance of the scraper by about 68%, which is very beneficial to improve the service life and reliability of the scraper conveyor.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Ozgen Akalin ◽  
K. Vefa Ezirmik ◽  
Mustafa Urgen ◽  
Golam M. Newaz

Wear characteristics of Al6061 composites, reinforced with short NiTi fibers, were investigated. The NiTi/Al6061 composite samples were fabricated using pressure-assisted sintering process in ambient air where the NiTi fibers are aligned unidirectional in the Al matrix. In addition, NiTi/Al6061 composite with 5 wt % SiC particulates and monolithic Al6061 and Al6061 with 5 wt % SiC particulates were processed in similar conditions. The wear tests were performed using a reciprocating tribometer in ball-on-flat configuration where the counterbody material was martensitic steel. The effects of fiber isotropy and SiC reinforcements on wear resistance were experimentally investigated in dry sliding. Wear properties of the samples were studied using an optical profiler and a scanning electron microscope analysis. The results showed that transverse NiTi fibers improve the wear resistance significantly. Samples with transverse fiber orientation show mostly abrasive wear, whereas, monolithic and parallel samples show adhesive wear mechanism. In addition, SiC reinforcements improve the wear resistance of the composite and the monolithic samples. Since the Al6061 matrix material is smeared onto NiTi fibers in a short period, all composite samples show similar frictional characteristics after certain period of running in dry sliding.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Satnam Singh ◽  
Dheeraj Gupta ◽  
Sarbjeet Kaushal

Abstract Metal matrix composites of nickel-based powder reinforced with silicon carbide are processed through a domestic microwave applicator. In situ melting and casting of composites were carried out using microwave energy with average processing time of 25 min. Phase analysis of processed composites revealed the formation of some hard-intermetallic compounds such as nickel silicides (NiSi, Ni2Si, and Ni3Si2) and carbides (Cr3C2 and Cr7C3). Microstructure analysis confirms the favorable growth of equiaxed grains with uniform dispersion of reinforcement and low porosity defects (1.5–1.8%). The formation of hard-intermetallic compounds and the presence of SiC reinforcement led to the increased microhardness of composites. Sliding wear tests under dry sliding conditions with varying load and velocity conditions revealed the formation of stable oxide tribolayers at 1.0 m/s of sliding velocity and 15 N load. Fractography of worn-out samples revealed abrasion of surfaces at the lower load (10 N) condition. However, on increasing the load, the shearing of surfaces due to adhesion, plastic deformations, and surface pullout was observed. At higher loads (20 N) and higher sliding velocities (1.5 m/s), particle pullout and three-body abrasive wear mechanisms were observed. The overall weight loss study revealed that the addition of 5% and 10% volume fraction of SiC reinforcement reduced the wear-rate by 58.9% and 80.6% in comparison to the pure nickel casting at the sliding velocity of 1 m/s and under 15 N load.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 986 ◽  
Author(s):  
Qiu ◽  
Xing ◽  
Dong

In this paper, a two-step method, rapid-flow mixing followed by high-pressure compositing was used to prepare a macro-ZTA (ZrO2-toughened Al2O3) particles reinforced high chromium cast iron (HCCI) matrix composite. The method is based on the squeeze casting process without general casting pollution problems. The microstructure, mechanical properties and dry sliding wear performance of the fabricated composite were investigated. The results showed that the particles were distributed uniformly throughout the iron matrix and a tightly bonded interface was obtained. Under dry sliding wear conditions, the wear resistance of the composite was significantly improved in comparison with the HCCI alloy, and the relative wear resistance was 1.8 and 2.9 times at the applied load of 300 and 900 N, respectively. When the load increased from 300 N to 900 N, the wear characteristics of the composite changed from shallow and narrow grooves and scratches to damages in the form of fragmentation of particles, transfer layer and interface cracking.


2013 ◽  
Vol 652-654 ◽  
pp. 64-68 ◽  
Author(s):  
Jing Lai Tian ◽  
Fang Xia Ye ◽  
Li Sheng Zhong ◽  
Yun Hua Xu

In-situ production of (Fe,Cr)7C3 particulate bundles-reinforced iron matrix composites were prepared by infiltration casting between Cr wires and white cast iron at 1200°C plus subsequent heat treatment. The composites prepared under different heat treatment time were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), macrohardness test and pin-on-disc wear resistance test. The results show that the composite is mainly consist of (Fe,Cr)7C3 carbides and γ-Fe. The area of the particulate bundles gradually increases with the increase of heat treatment time, the microstructure evolved from eutectic to hypoeutectic, and the morphologies of the reinforcements present chrysanthemum-shaped, granular and intercrystalline eutectics, respectively. The (Fe,Cr)7C3 particulate bundles reinforced composite has high macrohardness and excellent wear resistance under dry sliding wear testing conditons.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 610 ◽  
Author(s):  
Yu-Yang Gao ◽  
Feng Qiu ◽  
Tian-Shu Liu ◽  
Jian-Ge Chu ◽  
Qing-Long Zhao ◽  
...  

The in situ TiC/Al-Cu nanocomposites were fabricated in the Al-Ti-C reaction systems with various carbon sources by the combined method of combustion synthesis, hot pressing, and hot extrusion. The carbon sources used in this paper were the pure C black, hybrid carbon source (50 wt.% C black + 50 wt.% CNTs) and pure CNTs. The average sizes of nano-TiC particles range from 67 nm to 239 nm. The TiC/Al-Cu nanocomposites fabricated by the hybrid carbon source showed more homogenously distributed nano-TiC particles, higher tensile strength and hardness, and better abrasive wear resistance than those of the nanocomposites fabricated by pure C black and pure CNTs. As the nano-TiC particles content increased, the tensile strength, hardness, and the abrasive wear resistance of the nanocomposites increased. The 30 vol.% TiC/Al-Cu nanocomposite fabricated by the hybrid carbon source showed the highest yield strength (531 MPa), tensile strength (656 MPa), hardness (331.2 HV), and the best abrasive wear resistance.


2005 ◽  
Vol 488-489 ◽  
pp. 741-744 ◽  
Author(s):  
Ali Arslan Kaya ◽  
E.S. Kayali ◽  
Dan Eliezer ◽  
G. Gertsberg ◽  
N. Moscovitch

The dry sliding wear behavior of magnesium-matrix-composites (MMC) reinforced by boron carbide particulates (B4Cp) has been investigated. Magnesium is the lightest structural material and is a good choice as a metal matrix for boron carbide and silicon carbide addition. Magnesium and its alloys, without reinforcement, are generally not suitable for mechanical applications due to their low wear resistance. The MMCs used in this study were produced via highpressure die-casting technique. The wear resistance of B4C/AZ91D composite reinforced with 12 and 25 wt% B4C were studied, compared with unreinforced diecast AZ91D. As-cast microstructures of the materials and boron carbide particules were characterized by using Scanning Electron Microscopy (SEM). The hardness values of the control sample and the composites were determined via Vickers hardness measurements. Pin on disk dry sliding wear tests were carried out to study wear rate and wear mechanisms. The magnesium matrix composites were used as pins while mild steel as disc material. The worn surfaces of pins were examined by using SEM. The wear performance of magnesium matrix composites was improved with increasing volume fraction of B4C up to a certain level.


2016 ◽  
Vol 852 ◽  
pp. 435-445 ◽  
Author(s):  
P. Sangaravadivel ◽  
N. Natarajan ◽  
V. Krishnaraj

This present study aims to investigate the dry sliding wear behaviour of tungsten disulfide (WS2) particle reinforced bronze matrix composite against surface hardened steel and to discover the optimum wear parameter values such as applied load, sliding distance, sliding velocity and volume fraction of reinforcement to reduce the specific wear rate. The composite specimens were fabricated by liquid metallurgy route by varying the volume fraction of solid lubricant particles and prepared as per American Society for Testing of Materials (ASTM) G99-95. The experiments were carried out based on Taguchi design of experiments technique with L27 orthogonal array. The wear tests were conducted in pin-on disc wear testing machine for different loads - 20N, 40N and 60N, sliding velocities - 2.09m/s, 2.62 m/s and 3.14m/s and sliding distances of 600m, 1200m and 1800m in unlubricated conditions. The significant influence of wear parameters on sliding wear, interactions and optimum combination of wear parameter values to minimize the wear rate were obtained by signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The results demonstrated that inclusion of tungsten disulfide particles decreased the wear rate of bronze and also the increases in amount of secondary phase increase the wear resistance of composites. The effect of solid lubricant particle on interfacial temperature was also studied and reported. It was found that percentage of solid lubricant and load are the most significant factors influencing the friction and wear properties of composites. The results revealed that, WS2 particle reinforced bronze matrix composites were the potential component can be replaced for pure bronze products in wear resistance applications.


2013 ◽  
Vol 420 ◽  
pp. 234-239
Author(s):  
Feng Yan Yang ◽  
Shi Jie Wang ◽  
Xiao Ren Lv

The wear mechanisms of different graphite contents of NBR by 45# steel under dry sliding and water lubrication were investigated. On MPV-600 computer-controlled abrasive wear testing machine, the coefficients of friction were measured continuously. Results showed that under dry sliding condition, the rubber wear loss is big, the coefficient of friction is higher, the temperature of the friction surface is rise obviously. Wear loss and friction coefficient of NBR decrease with the increase of graphite contents; With the increase of graphite contents wear loss and the friction coefficient decreases, and is mainly due to the graphite lubrication performance and increase the stiffness of the rubber contact area. At low content of graphite, adhesive wear of NBR is showed, in the high content of graphite, abrasive wear is showed. Water lubrication condition, wear surface level off, the wear loss is very small, and the lubrication and cooling effect of water makes the friction coefficient decrease. Graphite content is higher, the wear loss and coefficient of friction is smaller.


Sign in / Sign up

Export Citation Format

Share Document