Effects of Bu3MeNTf2N Ionic Liquid Addition on Conductivity of PVC-NH4Tf Polymer Electrolytes

2015 ◽  
Vol 1107 ◽  
pp. 194-199
Author(s):  
Ri Hanum Yahaya Subhan ◽  
S.K. Deraman ◽  
N.S. Mohamed

Solid polymer electrolytes (SPEs) with poly (vinyl) chloride (PVC) doped with a fixed amount of ammonium trifluoro methane sulfonate (NH4Tf) and with varying concentrations of ionic liquid butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (Bu3MeNTf2N) were synthesised via solution cast technique. PVC-NH4Tf-Bu3MeNTf2N-based SPEs with 15 weight % Bu3MeNTf2N exhibit conductivity of 1.56 x 10-4 Scm-1 at room temperature. The ionic conductivity is attributed to the dissociation of NH4Tf facilitated by Bu3MeNTf2N. Results of XRD indicate that the most amorphous film has the highest conductivity and this is corroborated by the results of DSC. FTIR spectra revealed that Bu3MeNTf2N has weak interaction suggesting that it acts mainly as a lubricant to facilitate polymer segmental motion.

2015 ◽  
Vol 12 (2) ◽  
pp. 83
Author(s):  
Siti Fadzilah Ayub ◽  
Khuzaimah Nazir ◽  
Ahmad Fairuz Aziz ◽  
Siti Irma Yuana Saaid ◽  
Muhd Zu Azhan Yahya ◽  
...  

This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.


2016 ◽  
Vol 705 ◽  
pp. 150-154
Author(s):  
Nik Aisyah Suraya Nik Zulkepeli ◽  
Tan Winie ◽  
R.H.Y. Subban

Polymer electrolyte films of poly (vinyl) chloride (PVC) as polymer host doped with ionic liquid 1-butyl-3-methylimidazolium trifluoromethasulfonate (BMIMCF3SO3) were prepared by solution cast technique. Ionic conductivity was studied for 95 wt.% and 80 wt.% PVC by using Impedance Spectroscopy (IS). Arrhenius and Vogel-Tamman Fulcher (VTF) behavior were observed before and after Tg of the systems. Fourier Transform Infrared (FTIR) study confirmed that complexation occurred between PVC and BMIMCF3SO3.


2021 ◽  
Vol 317 ◽  
pp. 393-399
Author(s):  
Norfarlina Azhar ◽  
Ab Malik Marwan Ali ◽  
Rosnah Zakaria ◽  
Mohamad Fariz Mohamad Taib ◽  
Oskar Hasdinor Hassan ◽  
...  

In this work, the film contained a mixture of PMMA, salt, and plasticizers are studied. PMMA as a host polymer, ammonium trifluoromethane sulphonate or ammonium triflate (NH4CF3SO3) as a doping salt and ethylene carbonate (EC) as a plasticizer is used in this present study. PMMA salt complexes system and plasticized PMMA salt complexes system are prepared by solution cast technique at room temperature. FTIR is used to study the interaction between polymer and salt, and between polymer–salt and plasticizer. The carbonyl group C=O asymmetric stretching mode observed at 1721 cm-1 is broadened and shifted to lower wavenumber when ammonium triflate was added into PMMA. The broadening, shifting and reduction in wavenumbers of FTIR spectra show that the complexation has occurred between the polymer and salt. EIS is performed to measure the electrical conductivity of the polymer–salt system prepared at ambient temperature. The electrical conductivity of film containing 1.0 g of PMMA–35 wt% NH4CF3SO3–16 wt% EC exhibit the highest electrical conductivity with the value of 2.461 x 10-4 S/cm2. XRD is carried out to study the pattern of pure PMMA, PMMA–NH4CF3SO3 and PMMA–NH4CF3SO3–EC. The XRD analysis shows the addition of plasticizer to the polymer–salt system increase the amorphousness of the polymer electrolytes hence increases in conductivity.


2015 ◽  
Vol 12 (2) ◽  
pp. 83
Author(s):  
Siti Fadzilah Ayub ◽  
Khuzaimah Nazir ◽  
Ahmad Fairuz Aziz ◽  
Siti Irma Yuana Sheikh Mohd Saaid ◽  
Muhd Zu Azhan Yahya ◽  
...  

This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.


2015 ◽  
Vol 719-720 ◽  
pp. 67-72 ◽  
Author(s):  
M.I.H. Sohaimy ◽  
Mohd Ikmar Nizam Isa

The present work investigated the effect of carboxy methylcellulose (CMC) solid polymer electrolytes doped with ammonium carbonate (AC) prepared from solution cast technique. The CMC-AC solid polymer electrolytes system has been analyzed using EIS to understand its conductivity and dielectric behavior at temperature range of 303 K to 363 K. The highest conductivity achieved at room temperature (303K) is 7.71 x 10-6S cm-1doped with 7wt.% of AC and all samples follows Arrhenius behaviour. The dielectric constant (εr) value was found to be dependent of ionic dopant.


2015 ◽  
Vol 754-755 ◽  
pp. 157-160
Author(s):  
Nursyazwani Sukri ◽  
N.S. Mohamed ◽  
R.H.Y. Subban

Solid polymer electrolytes (SPEs) comprising of a blend of Poly (ethyl methacrylate) (PEMA) and Epoxidized natural rubber-50 (ENR50) as polymer host and lithium triflate (LiCF3SO3) as dopant were prepared by solution cast technique. The blend based polymer electrolytes have a fixed PEMA/ENR50 ratio of 70:30 by wt. % as at this ratio ENR-50 imparted stable mechanical properties to the otherwise fragile PEMA. The incorporation of LiCF3SO3into the blend is found to increase the conductivity of PEMA/ENR50. The highest conductivity achieved was 3.64 x 10-5Scm-1at 40wt. % LiCF3SO3. The structure of the samples was investigated by X-ray diffraction and the results show that the highest conducting sample is the most amorphous.


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


2020 ◽  
pp. 152808372097062
Author(s):  
Muhammad Yameen Solangi ◽  
Umair Aftab ◽  
Muhammad Ishaque ◽  
Aqeel Bhutto ◽  
Ayman Nafady ◽  
...  

Solid polymer electrolytes (SPEs) are the best choice to replace liquid electrolytes in supercapacitors, fuel cells, solar cells and batteries. The main challenge in this filed is the ionic conductivity and thermal stability of SPEs which is still not up to mark, therefore more investigations are needed to address these issues. In this study, PVA/salt based SPEs was fabricated using both solution cast and electro-spinning methods to probe the effect of different salts such as (NaCl, KCl and KI) and their concentrations on the ionic conductivity. Scanning electron microscopy (SEM) x and Fourier Transform Infra-Red (FTIR) have been employed to study the morphology as well as the different functional groups of SPEs, respectively. It was noted that small addition of NaCl, KCl and KI salts in SPEs dramatically increased the ionic conductivity to 5.95×10−6, 5.31×10−6 and 4.83×10−6 S/cm, respectively. Importantly, the SPEs obtained with NaCl via electro-spinning have higher ionic conductivity (5.95×10−6 S/cm) than their casted SPEs (1.87×10−6 S/cm). Thermal stability was also studied at two different temperatures i.e. 80 °C and 100 °C. The weight loss percentage of electrospun SPEs have zero percent weight loss than the solution based SPEs. The combined results clearly indicated that the nature of salt, concentration and fabrication process play a vital role in the ionic conductivity. Also, the NaCl salt with low molecular weight at low concentrations shows an enhanced ionic conductivity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Zul Hazrin Z. Abidin

Solid polymer electrolytes based on chitosan NaCF3SO3 have been prepared by the solution cast technique. X-ray diffraction shows that the crystalline phase of the pure chitosan membrane has been partially disrupted. The fourier transform infrared (FTIR) results reveal the complexation between the chitosan polymer and the sodium triflate (NaTf) salt. The dielectric constant and DC conductivity follow the same trend with NaTf salt concentration. The increase in dielectric constant at different temperatures indicates an increase in DC conductivity. The ion conduction mechanism follows the Arrhenius behavior. The dependence of DC conductivity on both temperature and dielectric constant (σdc(T,ε′)=σ0e−Ea/KBT) is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document