Enzymatic Hydrolysis of Lignocellulosic Oil Palm Empty Fruit Bunch (EFB)

2015 ◽  
Vol 1113 ◽  
pp. 305-310
Author(s):  
Qadly Ameen Pahlawi ◽  
Nazlee Faisal Ghazali ◽  
Khairilanuar Mohd Hanim ◽  
Nik Azmi Nik Mahmood

A preliminary study was performed on enzymatic hydrolysis process for treating empty fruit bunch (EFB) fibre. The bioconversion of cellulose hydrolysis was carried out with soluble cellulase from Trichodermareesei as the biocatalyst. Crucial trends such as substrate and enzyme loading influencing the enzymatic reaction were also studied in order to enhance the cellulose conversion. The results indicate that as the enzyme loading was increased, the EFB conversion also increased until it reached 115.63 FPU/g of enzyme concentration, beyond this values, the reverse occurred. On the other hand, as the substrate loading was increased the conversion decreased. Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing conversion at increasing enzyme loading and substrate loading.

2021 ◽  
Author(s):  
Dwini Normayulisa Putri ◽  
Meka Saima Perdani ◽  
Masafumi Yohda ◽  
Tania Surya Utami ◽  
Muhamad Sahlan ◽  
...  

Abstract Enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB) that has been pretreated by modified pretreatment has been investigated in this study. The OPEFB used was pretreated by using sequential peracetic acid – alkaline peroxide solution. As the modification method, the assistance of pretreatment by ultrasound was conducted, in order to increase the enzyme accessibility. Therefore, it enhances the production of reducing sugar on the hydrolysis process. Prior to hydrolysis process, OPEFB was initially treated by using peracetic acid solution, comprise of CH3COOH (> 99%) and H2O2 (30% w/w), assisted by ultrasound for 3 hours at 35oC. Afterwards, OPEFB was treated by using alkaline peroxide solution, comprise of NaOH (40% w/w) and H2O2 (35% w/w), assisted by ultrasound for 10 hours at 35oC. OPEFB that has been pretreated was then subjected to enzymatic hydrolysis process using cellulase enzyme, in order to convert cellulose content into reducing sugar. Enzymatic hydrolysis was carried out at 50oC in a shaker incubator with 150 rpm for 48 hours. In this study, the effect of different enzyme concentration and hydrolysis time towards the sugar concentration in modified-pretreated OPEFB was observed and analyzed. Three different concentrations of enzyme were used, including 1.25, 2.5, and 5 g/L, and reducing sugar concentrations were analyzed at 30 and 45 minutes, and 1, 2, 4, 6, 24, 30, and 48 hours. Based on results, enzyme concentration has a significant effect to the production of reducing sugar. The reducing sugar concentrations obtained at the end of the hydrolysis process were 8.48, 11.06, 19.16 g/L, at the enzyme concentrations of 1.25, 2.5, and 5 g/L, respectively. At any hydrolysis time, the highest sugar concentration has been achieved on the highest enzyme concentration of 5 g/L. Moreover, the effective hydrolysis time were achieved at 6 hours, at all concentration of enzyme, since the production of reducing sugar were insignificant after 6 hours. This study showed an increase in reducing sugar production by 8.25% in the hydrolysis process using OPEFB pretreated by modified pretreatment compared to the non-modified pretreatment.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2020 ◽  
Vol 3 (2) ◽  
pp. 98-107
Author(s):  
Galileo E. Araguirang ◽  
Arianne Joyce R. Arizala ◽  
Eden Beth B. Asilo ◽  
Jamie Louise S. Batalon ◽  
Erin B. Bello ◽  
...  

Banana (M. acuminata x balbisiana) is an abundant lignocellulosic waste material in large plantations all over the Philippines, especially in Mindanao, which can be utilized as substrate in producing high-value products like ethanol. To compensate for the low yield based on total weight of substrate due to the high moisture content of banana pseudostem, there is the primary challenge to make the conversion of this lignocellulosic biomass into monomeric sugar and then into ethanol more efficiently in order to achieve yields that would make it cost-competitive. Hence, this study evaluated the effects of solid loading, incubation time and amount of enzyme on yield of reducing sugars in the enzymatic hydrolysis process and attempted to optimize the significant factors by Response Surface Methodology (RSM), specifically using Box-Behnken design. There was significant improvement on the reducing sugar yield of the pretreated banana pseudostem at 20 h incubation time, 15 g solid loading and 0.55 % enzyme concentration. Ethanol production was observed to be higher in the detoxified substrate although biomass was higher for the non-detoxified substrate. As to our knowledge, the present study is the first attempt to produce second generation ethanol using banana pseudostem waste as feedstock in the Philippines.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2015 ◽  
Vol 35 (2) ◽  
pp. 61-66 ◽  
Author(s):  
Raquel Cristine Kuhn ◽  
Marcio Antonio Mazutti ◽  
Edson Luiz Foletto ◽  
Valéria Dal Prá ◽  
Eduardo Zimmermann ◽  
...  

<p>In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of <em>Trichoderma</em> <em>reesei</em>. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate period were measured. The best results for the ultrasound-assisted enzymatic hydrolysis was obtained using 3 wt% of enzyme, 60 <sup>o</sup>C and moisture content of 65 wt%, yielding 0.38 g sugar/g rice bran, whereas for the hydrolysis in the absence of ultrasound the highest yield was 0.20 g sugar/g rice bran using 3 wt% of enzyme, 60 <sup>o</sup>C and moisture content of 50 wt%. The use of ultrasound-assisted enzymatic hydrolysis of rice bran was intensified, obtaining around 74% more fermentable sugar than in the absence, showing that the use of ultrasound is a promising technology to be used in enzymatic reaction as an alternative of process intensification. </p>


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1343
Author(s):  
Mpho S. Mafa ◽  
Brett I. Pletschke ◽  
Samkelo Malgas

Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.


2020 ◽  
pp. 53-61
Author(s):  
Ansharullah Ansharullah ◽  
Muhammad Natsir

The aims of this study were to characterize the kinetics of enzymatic hydrolysis of sago starch, obtained from Southeast Sulawesi Indonesia. The enzyme used for hydrolysis was bacterial ∝-amylase (Termamyl 120L from Bacillus licheniformis, E. C. 3.2.1.1).  The method to determine the initial velocity (Vo) of the hydrolysis was developed by differentiation a nonlinear equation (NLE).  The Vo of the hydrolysis was measured at various pH (6.0, 6.5,and 7.0), temperatures (40, 60, 75 and 95oC), enzyme concentrations (0.5, 1.0, 1.5 and 2.0 µg per mL) and in the presence of 70 ppm Ca++. The optimum conditions of this experiment were found to be at pH 6.5 – 7.0 and 75oC, and the Vo increased with increasing enzyme concentration. The Vo values at various substrate concentrations were also determined, which were then used to calculate the enzymes kinetics constant of the hydrolysis, including Michaelis-Menten constant (Km) and maximum velocity (Vmax) using a Hanes plot.  Km and Vmax values were found to be higher in the measurement at pH 7.0 and 75oC. The Km values  at four  different combinations of pH and temperatures (pH 6.5, 40oC; pH 6.5, 75oC; pH 7.0, 40oC; pH 7.0, 75oC) were found to be 0.86, 3.23, 0.77 and 3.83 mg/mL, respectively; and Vmax values were 17.5, 54.3, 20.3 and 57.1 µg/mL/min, respectively. The results obtained showed that hydrolysis rate of this starch was somewhat low.


Author(s):  
Mehdi Ashraf-Khorassani ◽  
William M. Coleman ◽  
Michael F. Dube ◽  
Larry T. Taylor

SummaryFree amino acids have been isolated via optimized enzymatic hydrolysis of F1 tobacco protein using two cationic resins (Amberlite IR120 and Dowex MAC-2). Optimized enzymatic conversions of the protein as a result of systematic variations in conditions (e.g., time, temperature, pH, enzyme type, enzyme concentration, anaerobic/aerobic environments, and protein concentration) employing commercially available enzymes, were consistently higher than 50% with qualitative amino acid arrays that were consistent with the known composition of tobacco F1 protein. Amberlite IR120 was shown to have a much higher efficiency and capacity for isolation of amino acids from standard solutions and from hydrolysate when compared with the results using Dowex MAC-2. Two columns packed with conditioned Amberlite IR120 (120 × 10 mm,12–15 g resin) and (200 × 25.4 mm, 60–65 g resin) were used to isolate two batches (2.5–3.0 mg and 13–15 mg) of free amino acids, respectively. A relatively inexpensive analytical methodology was developed for rapid analysis of the free amino acids contained within the enzyme hydrolysate. Commercially available enzymes, when employed in optimized reaction conditions, are very effective for enzymatic conversion of tobacco F1 protein to free amino acids.


Sign in / Sign up

Export Citation Format

Share Document