Characteristics of Spore-Bound Laccase from Bacillus subtilis WD23 and its Use in Dye Decolorization

2010 ◽  
Vol 113-116 ◽  
pp. 226-230 ◽  
Author(s):  
Chun Lei Wang ◽  
Min Zhao ◽  
Xing Dong Wei ◽  
Tai Lun Li ◽  
Lei Lu

Treatment of xenobiotic compounds such as textile dyes with bacterial laccases is limited to the acid pH range and moderate temperatures. A bacterial strain, designated as WD23, was isolated from forest soil using Luria-Bertani medium supplemented with 0.4 mmol/L Cu2+. The isolated strain was identified as Bacillus subtilis by physiological and biochemical tests and 16S rDNA sequence analysis. Here we charactered the spore-bound laccase of B. subtilis WD23 and used the laccase to decolorize dyes. The spores of the strain showed laccase-like activity, oxidizing syringaldazine, 2,6-dimethoxyphenol and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate acid)(ABTS). The optimum pH and temperature for the spore-bound laccase were 6.8 and 60°C, respectively. It also showed higher stabilities over a broad pH range, the pH half-life was more than 6 months at pH 6.8. The spore laccase could efficiently decolorize 50~90% of anthraquinone and azo dyes in 24 h. The spore laccase can play an important role in bioremediation.

2011 ◽  
Vol 183-185 ◽  
pp. 839-843
Author(s):  
Mei Hui Du ◽  
Min Zhao ◽  
Lei Lu ◽  
Tian Nv Wang ◽  
Tai Lun Li ◽  
...  

A newly isolated strain LS02 was estimated for its ability in dye decolorization. The LS02 strain was identified as Bacillus subtilis by the combination of physicochemical tests and 16S rDNA sequence analysis. The isolated strain could oxidize the laccase substrate syringaldazine, indicating the existence of laccase activity. B. subtilis LS02 grown well in the pH range of 5.0~9.0, and showed an optimum growth temperature at 37°C. Indigo carmine could be completely decolorized by B. subtilis LS02 after 4 days, whereas Remazol Brilliant Blue R, reactive black 5 and crystal violet were poorly decolorized. The result indicated that the laccase of B. subtilis LS02 may be suitable for the application in textile bleaching of indigo carmine.


2011 ◽  
Vol 183-185 ◽  
pp. 773-777 ◽  
Author(s):  
Jun Bo Pan ◽  
Min Zhao ◽  
Lei Lu ◽  
Mei Hui Du ◽  
Guo Fu Li ◽  
...  

Bacterial strains exhibiting laccase activity were isolated from the forest soil. A strain LC02 with syringaldazine oxidation ability was obtained using enrichment medium supplemented with copper ions. The isolated strain was identified as Bacillus amyloliquefaciens using physiological and biochemical tests as well as 16S rDNA sequence analysis. The characterization of spore laccase activity was investigated. The result showed that the optimum pH and temperature of the enzyme was 6.6 and 70°C, respectively. A great thermostability was observed for the spore laccase at 70°C. Laccase activity was strongly inhibited by 0.1 mmol/L NaN3, dithiothreitol and cysteine.


2011 ◽  
Vol 61 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Chun-Mei Zhang ◽  
Xiao-Wei Huang ◽  
Wen-Zheng Pan ◽  
Jing Zhang ◽  
Kang-Bi Wei ◽  
...  

Two novel thermophilic, spore-forming bacterial strains, T-11T and E-112T, were isolated from hot springs in Tengchong and Eryuan counties of Yunnan province in south-west China. The strains were Gram-stain-positive rods, occurring singly or in chains. Growth of strain T-11T was observed between 30 and 75 °C (optimum 50 °C) and at pH 7–11 (optimum pH 8.5), while the temperature range for strain E-112T was 35–70 °C (optimum 55 °C) and the pH range was 7.0–11.0 (optimum pH 8.0). The DNA G+C contents of strains T-11T and E-112T were 41.1 and 42.6 mol%, respectively. On the basis of 16S rRNA gene sequence similarity, the two strains were shown to be related most closely to Anoxybacillus species. The chemotaxonomic characteristics [predominant isoprenoid quinone menaquinone 7 (MK-7); major fatty acids iso-C15 : 0 and iso-C17 : 0] also supported the affiliation of strains T-11T and E-112T to the genus Anoxybacillus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains T-11T and E-112T from Anoxybacillus species with validly published names. Strains T-11T and E-112T therefore represent two novel species, for which the names Anoxybacillus tengchongensis sp. nov. (type strain T-11T =CCTCC AB209237T =KCTC 13721T) and Anoxybacillus eryuanensis sp. nov. (type strain E-112T =CCTCC AB209236T =KCTC 13720T) are proposed.


2021 ◽  
Vol 66 (1) ◽  
pp. 72-79
Author(s):  
Thuoc Doan Van ◽  
Hung Nguyen Phuc

The effect of physical parameters such as temperature and pH on the production, activity, and stability of α-amylase from Bacillus subtilis V37 was investigated. The results indicated that the optimum culture conditions for enzyme activity were pH 7.0 and 35 oC. The optimum pH and temperature for enzyme activity were 6.0 and 70 oC. The crude enzyme was found to be stable in the pH range of 5.0 to 7.0. The enzyme was stable for 1 h at a temperature from 30 to 80 oC; nearly 100% of enzyme activity remained at temperatures of 30 - 40 oC, and about 34% of original activity remained at a temperature of 80 oC. These features demonstrated that α-amylase from B. subtilis V37 can be applied in many areas such as the food, fermentation, and animal feed industries.


2010 ◽  
Vol 113-116 ◽  
pp. 913-918
Author(s):  
De Bin Li ◽  
Lei Lu ◽  
Min Zhao

Bacterial strains with chlorimuron-ethyl degrading ability were isolated for bioremediation of contaminated soil. Six strains were obtained from chlorimuron-ethyl contaminated soil by enrichment cultivation. HPLC analysis indicated that two strains (A4 and A5) demonstrated high degradation efficiency than other strains. More than 61% of chlorimuron-ethyl was degraded by the two strains after 24 h. Based on the results of biochemical tests and 16S rDNA sequence analysis, the strain A4 and A5 were identified as Bacillus licheniformis and B. cereus, respectively. The cultivation conditions of the two strains were optimized to increase the biomass production.


2021 ◽  
Author(s):  
Inam Ullah ◽  
Nawab Ali ◽  
Waheed Ullah ◽  
Muhammed Qasim ◽  
Muhammed Nughman ◽  
...  

Abstract Thermophilic proteases are important industrial enzymes because they can be used at unavoidable temperature in various bioprocessing schemes. The bacterial population of Cholistan desert was explored for thermophillic proteases and their industrial applications. Three bacterial isolates K1, K5, and K7 were found promising protease producers. These isolates were preliminary identified as Bacillus based on morphological characteristics and biochemical tests (positive for catalase, oxidase, and citrate tests, and negative for indole and urease tests). The isolates K1, K5, and K7 were further identified as Bacillus filamentosus, Lysinibacillus cresolivorans, and Bacillus subtilis, respectively by phylogenetic analysis. The isolates grew best at 50oC while Bacillus filamentosus (K1), Lysinibacillus cresolivorans (K5), and Bacillus subtilis (K7) produced larger zones of hydrolysis at 37oC, 45oC and 50oC at pH 7, respectively. The optimum temperature for protease activity was 65oC for Bacillus filamentosus and Lysinibacillus cresolivorans and 55oC for Bacillus subtilis, and the optimum pH for activity was 9 for all the three strains. The protease produced by these isolates were found active at high temperature (37oC to 85oC) and high pH (5–12) which make them industrially important thermoalkaliphilic proteases. Theses proteases successfully de-haired cow’s skin and de-stained blood from cotton cloth pieces, which are rarely tested applications of these proteases.


2004 ◽  
Vol 54 (1) ◽  
pp. 269-273 ◽  
Author(s):  
Normand Labbé ◽  
Serge Parent ◽  
Richard Villemur

The Montreal Biodome operates a methanol-fed denitrification system that treats the water in its three million litre marine mesocosm. An unknown bacterium, named strain NL21T, was isolated from this system on TSA and R2A agar. The organism is a Gram-negative, rod-shaped (1×3 μm) facultative aerobe. Optimal growth conditions on R2A agar are 30–35 °C, pH 7–7·5 and 1 % (w/w) NaCl. Phylogenetic analysis of the 16S rDNA sequence reveals that strain NL21T forms a novel lineage in the family ‘Phyllobacteriaceae’ within the α2 subgroup of the Proteobacteria. The closest related genera are Aminobacter, Pseudaminobacter, Mesorhizobium and Defluvibacter. Major cellular fatty acids are C18 : 1 ω7c (75 %), C19 : 0 ω8c cyclopropane (9·4 %) and C18 : 0 (4·2 %). The DNA G+C content of strain NL21T (57 mol%) differs from those of all other described members of the ‘Phyllobacteriaceae’ (60–64 mol%). Strain NL21T reduces nitrate to nitrite, but does not reduce nitrite to nitrogen gas. Only a few sugars and amino acids can serve as carbon sources. Strain NL21T is able to grow without salt and tolerates up to 5 % NaCl. Phylogenetic analysis, as well as physiological and biochemical tests, showed that strain NL21T was different from all other members of the ‘Phyllobacteriaceae’ with validly published names. Strain NL21T therefore represents a novel genus, for which the name Nitratireductor aquibiodomus gen. nov., sp. nov. is proposed, with the type strain NL21T (=DSM 15645T=ATCC BAA-762T).


2013 ◽  
Vol 647 ◽  
pp. 588-594 ◽  
Author(s):  
Ren Peng ◽  
Gui Juan Yang ◽  
Qi Ming Wang ◽  
Yun Yun Du ◽  
Jia Rong Li

In this study, with phenol as sole source of carbon, a phenol-degrading strain was isolated from rotting wood and polluted sludge. The strain was identified as Rhodococcus ruber SD3 according to their morphological features and 16S rDNA sequence. Rhodococcus ruber SD3 almost completely degraded 1.0g L-1 phenol in 72 hours. Rhodococcus ruber SD3 was also capable of growing in a medium containing isooctane, cyclohexane, benzene, n-heptane, toluene, acetonitrile, chlorobenzene, naphthalene, n-hexane, 1-naphthol and dimethylbenzene as sole carbon source, respectively. Rhodococcus ruber SD3 was mutated using LiCl as a chemical mutagen. The optimal concentration of LiCl for mutagenesis was 0.3 %. The mutant M1 could degrade 99.8 % of 1.5 g L-1 phenol within 72h. The optimum pH and temperature for the degradation of phenol with mutant M1 were 7.5 and 35°C.


2011 ◽  
Vol 61 (4) ◽  
pp. 979-984 ◽  
Author(s):  
Lars Ganzert ◽  
Felizitas Bajerski ◽  
Kai Mangelsdorf ◽  
André Lipski ◽  
Dirk Wagner

Two novel cold-tolerant, Gram-stain-positive, motile, facultatively anaerobic bacterial strains, LI2T and LI3T, were isolated from moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St Kliment Ohridski. A rod–coccus cycle was observed for both strains. 16S rRNA gene sequence analysis revealed an affiliation to the genus Arthrobacter, with the highest similarity to Arthrobacter stackebrandtii and Arthrobacter psychrochitiniphilus for strain LI2T (97.8 and 97.7 % similarity to the respective type strains) and to Arthrobacter kerguelensis and Arthrobacter psychrophenolicus for strain LI3T (97.4 and 97.3 % similarity to the respective type strains). The growth temperature range was −6 to 28 °C for LI2T and −6 to 24 °C for LI3T, with an optimum at 16 °C for both strains. Growth occurred at 0–10 % (w/v) NaCl, with optimum growth at 0–1 % (w/v) for LI2T and 0.5–3 % (w/v) for LI3T. The pH range for growth was pH 4–9.5 with an optimum of pH 8 for LI2T and pH 6.5 for LI3T. The predominant fatty acids were anteiso-C15 : 0, C18 : 0 and anteiso-C17 : 0 for LI2T and anteiso-C15 : 0 and C18 : 0 for LI3T. Physiological and biochemical tests clearly differentiated strain LI2T from A. stackebrandtii and A. psychrochitiniphilus and strain LI3T from A. kerguelensis and A. psychrophenolicus. Therefore, two novel species within the genus Arthrobacter are proposed: Arthrobacter livingstonensis sp. nov. (type strain LI2T  = DSM 22825T  = NCCB 100314T) and Arthrobacter cryotolerans sp. nov. (type strain LI3T  = DSM 22826T  = NCCB 100315T).


2021 ◽  
Vol 9 ◽  
Author(s):  
Jing Yang ◽  
Jian Zhao ◽  
Jianchun Jiang ◽  
Hao Xu ◽  
Ning Zhang ◽  
...  

Alkali lignin-degrading Bacillus were isolated from forest soils in China and were identified as Bacillus subtilis TR-03 and Bacillus cereus TR-25 by 16S rDNA sequence analysis. Wherein TR-03 displayed optimal 26.72% alkali lignin (2 g/L) degradation at 7 days and 71.23% of Azure-B (0.01%) decolorization at 36 h of cultivation at 37°C. Ligninolytic enzyme analysis revealed that TR-03 was capable of depolymerizing alkali lignin effectively by the producing of lignin peroxidase and laccase, wherein higher laccase activity was cell-associated. At last, the physical and chemical changes of lignin via SEM and FTIR analysis was further observed to prove the lignin degradation by Bacillus subtilis TR-03.


Sign in / Sign up

Export Citation Format

Share Document