Synthesis of Alumina Based Alkaline Catalyst for Biodiesel-Derived Glycerol to Polyglycerol

2016 ◽  
Vol 1133 ◽  
pp. 33-37 ◽  
Author(s):  
Muhammad Ayoub ◽  
Abrar Inayat ◽  
Sintayehu Mekuria Hailegiorgis ◽  
Aamir Hussain Bhat

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future. The rapid growth of the biodiesel industry will result in overproduction of less value glycerol and create a superfluity of this impure by-product. The synthesis of alkaline alumina catalyst for polyglycerol production via solvent free base-catalyzed etherification of low value glycerol is reported. The etherification of biodiesel derived glycerol to polyglycerol was studied in a heterogeneous catalysis under solvent free system, using alkalines over γ – alumina catalysts. All the catalysts were prepared by incipient-wetness impregnation of an aqueous solution of alkaline compounds on γ – alumina as a support. The effects of alkaline compound, reaction temperature, catalyst amount, and reaction time in conversion of glycerol to polyglycerol were investigated. The catalyst with potassium loaded on γ -alumina gave the highest basicity and the best catalytic activity for this reaction. The highest glycerol conversion into polyglycerol production was obtained with high yield 79.5% over prepared catalyst respectively. Industrially, the findings attained in this study might contribute towards promoting the biodiesel industry through utilization of its by-products.

2013 ◽  
Vol 634-638 ◽  
pp. 599-603
Author(s):  
Hui Zhong ◽  
Zheng Fang ◽  
Bao Hua Zou ◽  
Xin Li ◽  
Kai Guo

The alkyl oleates were prepared by esterification of oleic acid with alkyl alcohols catalyzed by the lipase from Candida sp. 99-125 in solvent-free system. The influence of several factors, including enzyme concentration, temperature, molar ratio between oleic acid and alkyl alcohols and the structures of alcohols, was also investigated. The results indicated that the reactions catalyzed by lipase at 20 oC, in the presence of 5% (w/w) lipase, on the molar ratio of 1:1 between oleic acid and alcohols, afforded products in high yield and showed high selectivity to the alcohols with less hindrance on hydroxyl group. The lipase from Candida sp. 99-125 was identified to be an effective catalyst in the esterification of alcohol and oleic acid at low temperature.


2019 ◽  
Vol 31 (11) ◽  
pp. 2579-2584
Author(s):  
Abdulrahman I. Alharthi

Effect of calcination of tungstophosphoric acid catalyst was evaluated in terms of the synthesis of chalcone derivatives via Claisen-Schmidt condensation using the reaction of acetophenone and several substituted aldehydes. The catalyst was characterized before and after calcination by FT-IR to assess the effectiveness of the synthesis of the desired products. The calcined tungstophosphoric acid catalyst (HPW-CL) showed a better performance and high yield of Claisen-Schmidt products in a short period of time. It was also found out that the calcined tungstophosphoric acid provides a chemo selective, efficient and environmentally benign synthesis of chalcone in an excellent yield in a solvent-free system.


Fuel ◽  
2010 ◽  
Vol 89 (12) ◽  
pp. 3960-3965 ◽  
Author(s):  
Liping Zhang ◽  
Shuzhen Sun ◽  
Zhong Xin ◽  
Boyang Sheng ◽  
Qun Liu

RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34370-34373 ◽  
Author(s):  
Mhamed Benaissa ◽  
Abdullah M. Alhanash ◽  
Ahmed T. Mubarak ◽  
Morad Eissa ◽  
Taher Sahlabji ◽  
...  

Total conversion of cyclohexene to cyclohexane was achieved in a liquid phase hydrogenation reaction at room temperature, 1 atm H2 pressure and solvent-free system.


Sign in / Sign up

Export Citation Format

Share Document