CAD/CAM of Clothing Laser Cutting

2010 ◽  
Vol 139-141 ◽  
pp. 1299-1302
Author(s):  
Jian Xin Qiu ◽  
Yan Qiu Xu ◽  
Ying Li

The paper takes computer digital image processing as a foundation, laboratory analysis as the confirmation method, and takes garment industry production as the application production, researching the information characteristic of the clothing image design, the signal extraction, and the basic conversion rule in order to explore the computer-aided design of clothing pattern, apparel images (CAD), as well as the achievement of automatic laser cutting on complex design and apparel-hanging through the information technology. The topic emphatically discusses different graphic file format conversion technology and establishes the best craft parameter database that suits the laser cutting via the ACCESS software, while carrying on the shape error and precision analysis. The topic research conclusion will provide effective, reliable technology and the data support for the laser cutting craft in fashion industry. And it will enhance the laser processing efficiency of the fashion and the apparel hanging as well as guarantee the cutting quality to achieve the best effect.

Author(s):  
Joshua Liu ◽  
Jerry Fang ◽  
Ryan J. Murphy ◽  
Chad Gordon ◽  
Mehran Armand

Cranioplasty is a procedure for skull reconstruction after removal of bone defects such as tumors. Recent approaches for cranioplasty involve the use of customized cranial implants (CCIs). A challenge in performing the cranioplasty with CCI is that the actual size/shape is unknown until the tumor is removed. Often the procedure is performed in two stages. After removing the cranial defect, the surgeon works with an implant manufacturer to develop a CCI using computer-aided design and manufacturing (CAD/CAM) techniques. The CCI attachment to the skull will then require a second surgery. We recently proposed a robot-assisted single-stage cranioplasty. For conventional, single-stage CCI, the CCIs are usually made in oversized profiles and require manual intraoperative modification by the surgeon. The challenge, however, is that for complex cases the surgeon may spend a long time reshaping the CCI. This paper presents the development of a 5-axis laser cutting machine that has the capability of automatically shaping CCI profiles during single-stage cranioplasty. Preliminary results indicate a superior fit with only mm size gaps between the implant and the remaining skull.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


2021 ◽  
Vol 13 (3) ◽  
pp. 1081
Author(s):  
Yoon Kyung Lee

Technologies that are ready-to-use and adaptable in real time to customers’ individual needs are influencing the supply chain of the future. This study proposes a supply chain framework for an innovative and sustainable real-time fashion system (RTFS) between enterprises, designers, and consumers in 3D clothing production systems, using information communication technology, artificial intelligence (AI), and virtual environments. In particular, the RTFS is targeted at customers actively involved in product purchasing, personalising, co-designing, and manufacturing planning. The fashion industry is oriented towards 3D services as a service model, owing to the automation and democratisation of product customisation and personalisation processes. Furthermore, AI offers referral services to prosumers or/and customers and companies, and proposes individual designs with perfect styles and measurements using new 3D computer aided design and AI-based product design technologies for fashion and design companies and customers. Consequently, 3D fashion products in the RTFS supply chain are entirely digital, saving time and money with sampling and tracking capabilities, secured, and trusted with personalised service delivery.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1401
Author(s):  
Doo-Bin Song ◽  
Man-So Han ◽  
Si-Chul Kim ◽  
Junyong Ahn ◽  
Yong-Woon Im ◽  
...  

This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. A total of six FDPs were sequentially milled in one titanium alloy disk using a new set of burs every time (n = 4). The fitting accuracy of FDPs was mesiodistally evaluated by a silicone replica technique and the measurement was triplicated at four different locations: MO (marginal opening), MG (marginal gap), AG (axial gap), and OG (occlusal gap). Data were statistically analyzed using ANOVA and Tukey’s HSD test. The fitting accuracy of PMMA (polymethyl methacrylate) FDPs milled using the worn or new bur were evaluated by the same procedure (n = 6). The mean dimensions of titanium FDP for all measuring positions, except for AG, were significantly increased from the third milling. However, no difference was noted between the first FDP and the second FDP milled with the same set of burs. Severe edge chippings were observed in all milling burs. Detrimental effects of the worn burs on the fitting accuracy were demonstrated in the CAD/CAM-milled PMMA FDP. The results recommend proper changing frequency of cutting burs to achieve the quality of fit and predictable outcomes for dental CAD/CAM prostheses.


1999 ◽  
Vol 121 (4) ◽  
pp. 502-506 ◽  
Author(s):  
Q. J. Ge ◽  
M. Sirchia

This paper brings together the notion of analytically defined two-parameter motion in Theoretical Kinematics and the notion of freeform surfaces in Computer Aided Geometric Design (CAGD) to develop methods for computer aided design of two-parameter freeform motions. In particular, a rational Be´zier representation for two-parameter freeform motions is developed. It has been shown that the trajectory surface of such a motion is a tensor-product rational Be´zier surface and that such a kinematically generated surface has a geometric as well as a kinematic control structure. The results have not only theoretical interest in CAGD and kinematics but also applications in CAD/CAM and Robotics.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1170
Author(s):  
Giulio Marchesi ◽  
Alvise Camurri Piloni ◽  
Vanessa Nicolin ◽  
Gianluca Turco ◽  
Roberto Di Lenarda

Restorative materials are experiencing an extensive upgrade thanks to the use of chairside Computer-aided design/computer-assisted manufacturing (CAD/CAM) restorations. Therefore, due to the variety offered in the market, choosing the best material could be puzzling for the practitioner. The clinical outcome of the restoration is influenced mainly by the material and its handling than by the fabrication process (i.e., CAD/CAM). Information on the restorative materials performances can be difficult to gather and compare. The aim of this article is to provide an overview of chairside CAD/CAM materials, their classification, and clinically relevant aspects that enable the reader to select the most appropriate material for predictable success.


2020 ◽  
Vol 3 (2) ◽  
pp. 31-32
Author(s):  
Paul Brian S. Mendez ◽  
Rizalie N.E. Mibato

Dentistry has evolved from its origin to the present day, becoming almost entirely digitized and supervised. The digitalized dental laboratory saves time due to computer-aided design and computer-aided manufacture (CAD/CAM) technology, which will capture and display clients' tooth or teeth and gums on a 3D image on a computer screen sent to the lab.  It enables a dental lab technician to work faster and get the perfect design of the digital dental restoration. The main advantage of digitalization includes faster and improved efficiency on the turn-around time of devices, like crowns and bridges, and improved accuracy of procedures and manufactured gadgets. Digitalization Dental Laboratory (DDL) is the first to offer a digital dental lab in the city of Bacolod. The service allows laboratories to design the prosthesis digitally from in-house CAD software and email the design data provider or download the data file into a proprietary web host or server. The lab will cater to the digital needs of dental patients of the Multi-Specialty Dental Center (a sister company of DDL) and other dental clients.


Sign in / Sign up

Export Citation Format

Share Document