Application of LQR Techniques to the Anti-Sway Controller of Overhead Crane

2010 ◽  
Vol 139-141 ◽  
pp. 1933-1936 ◽  
Author(s):  
Bin Yang ◽  
Bin Xiong

This paper explains and demonstrates how to design an anti-sway controller of overhead crane for eliminating pendulum of hook-headed. In this paper, we use Lagrange Equation in analytical mechanics to obtain a mathematical model of crane crab motion system. Then the paper comes up with a piece of new idea, i.e. applies linear quadratic regulator techniques to the anti-sway controller’ design of overhead crane. In order to make the designed linear optimal system meet the practical production requirements better, we use a parametric formula’s method of solutions to LQ inverse problems to obtain the weighting matrix Q. In fact, the method is simple and practical, and ensures the performance of closed-loop system is optimized. The paper will introduce the design steps of anti-sway controller of overhead crane and realization of anti-sway controller, which are new and original in this paper.

2011 ◽  
Vol 328-330 ◽  
pp. 1868-1871
Author(s):  
Bin Yang ◽  
Lin Ma

This paper detailedly illustrates how to design an anti-sway controller of overhead crane for eliminating pendulum of hook-headed. First of all the paper uses Lagrange Equation in analytical mechanics to obtain a mathematical model of crane motion system in three dimensional space. Then the paper advances a new control method and designs an anti-disturbance tracking controller based on servo-compensator and stabilization compensator for eliminating pendulum of hook-headed and accurately fixing position. In general, it is difficult to design an appropriate control law because of the crane motion system’s nonlinearity and strong coupling. However, the control method the paper put forward is simple and effective, and ensures the transient state performance of closed-loop system preferable and stable. The paper will introduce the design steps of anti-sway controller of overhead crane and give a satisfying simulation result, which are new and original in this paper.


Author(s):  
Wankun Sirichotiyakul ◽  
Aykut C. Satici ◽  
Eric S. Sanchez ◽  
Pranav A. Bhounsule

Abstract In this work, we discuss the modeling, control, and implementation of a rimless wheel with torso. We derive and compare two control methodologies: a discrete-time controller (DT) that updates the controls once-per-step and a continuous-time controller (CT) that updates gains continuously. For the discrete controller, we use least-squares estimation method to approximate the Poincaré map on a certain section and use discrete-linear-quadratic-regulator (DQLR) to stabilize a (closed-form) linearization of this map. For the continuous controller, we introduce moving Poincaré sections and stabilize the transverse dynamics along these moving sections. For both controllers, we estimate the region of attraction of the closed-loop system using sum-of-squares methods. Analysis of the impact map yields a refinement of the controller that stabilizes a steady-state walking gait with minimal energy loss. We present both simulation and experimental results that support the validity of the proposed approaches. We find that the CT controller has a larger region of attraction and smoother stabilization as compared with the DT controller.


Author(s):  
A R Plummer

Three linear discrete-time model-based controller design techniques are compared: pole placement, linear quadratic Gaussian (LQG) and H∞ control. It is shown that design choices can be made for all three controllers by considering the effect on the sensitivity functions of the closed-loop system. Also all three controllers can be implemented using an identical controller structure. A comparative study of the application of the techniques to an electromechanical servosystem is made. The controllers are designed from a discrete-time plant model estimated from experimental data, and a polynomial-based solution method is used in each case. It is concluded that acceptable performance can be achieved using any of the controllers if informed design choices are made.


2018 ◽  
Vol 852 ◽  
pp. 146-177 ◽  
Author(s):  
Bartosz Protas ◽  
Takashi Sakajo

In this investigation, we use a simple model of the dynamics of an inviscid vortex sheet given by the Birkhoff–Rott equation to obtain fundamental insights about the potential for stabilization of shear layers using feedback control. As actuation, we consider two arrays of point sinks/sources located a certain distance above and below the vortex sheet and subject to the constraint that their mass fluxes separately add up to zero. First, we demonstrate using analytical computations that the Birkhoff–Rott equation linearized around the flat-sheet configuration is in fact controllable when the number of actuator pairs is sufficiently large relative to the number of discrete degrees of freedom present in the system, a result valid for generic actuator locations. Next, we design a state-based linear-quadratic regulator stabilization strategy, where the key difficulty is the numerical solution of the Riccati equation in the presence of severe ill-conditioning resulting from the properties of the Birkhoff–Rott equation and the chosen form of actuation, an issue that is overcome by performing computations with a suitably increased arithmetic precision. Analysis of the linear closed-loop system reveals exponential decay of the perturbation energy and the corresponding actuation energy in all cases. Computations performed for the nonlinear closed-loop system demonstrate that initial perturbations of non-negligible amplitude can be effectively stabilized when a sufficient number of actuators is used. We also thoroughly analyse the sensitivity of the closed-loop stabilization strategies to the variation of a number of key parameters. Subject to the known limitations of inviscid vortex models, our findings indicate that, in principle, it may be possible to stabilize shear layers for relatively large initial perturbations, provided that the actuation has sufficiently many degrees of freedom.


2021 ◽  
Vol 26 (1) ◽  
pp. 21
Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Nashwa Ahmad Kamal

In this paper, a loop shaping controller design methodology for single input and a single output (SISO) system is proposed. The theoretical background for this approach is based on complex elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions have a double periodicity. The gain and phase margins of the closed-loop system can be selected appropriately with this new loop shaping design procedure. The loop shaping design methodology consists of implementing suitable filters to obtain a desired frequency response of the closed-loop system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the theory of the elliptic functions. The elliptic function properties are implemented to facilitate the loop shaping controller design along with their fundamental background and contributions from the complex analysis that are very useful in the automatic control field. Finally, apart from the filter design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure as the first part of this study.


2013 ◽  
Vol 341-342 ◽  
pp. 945-948 ◽  
Author(s):  
Wei Zhou ◽  
Bao Bin Liu

In view of parameter uncertainty in the magnetic levitation system, the adaptive controller design problem is investigated for the system. Nonlinear adaptive controller based on backstepping is proposed for the design of the actual system with parameter uncertainty. The controller can estimate the uncertainty parameter online so as to improve control accuracy. Theoretical analysis shows that the closed-loop system is stable regardless of parameter uncertainty. Simulation results demonstrate the effectiveness of the presented method.


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


Author(s):  
Qian Zhang ◽  
Huaicheng Yan ◽  
Shiming Chen ◽  
Xisheng Zhan ◽  
Xiaowei Jiang

This paper is concerned with the problem of finite-time dissipative control for networked control systems by hybrid triggered scheme. In order to save network resources, a hybrid triggered scheme is proposed, which consists of time-triggered scheme and event-triggered scheme simultaneously. Firstly, sufficient conditions are derived to guarantee that the closed-loop system is finite-time bounded (FTBD) and [Formula: see text] dissipative. Secondly, the corresponding controller design approach is presented based on the derived conditions. Finally, a numerical example is presented to show the effectiveness of the proposed approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xuejuan Shao ◽  
Jinggang Zhang ◽  
Xueliang Zhang

The dynamic model of overhead crane is highly nonlinear and uncertain. In this paper, Takagi-Sugeno (T-S) fuzzy modeling and PSO-based robust linear quadratic regulator (LQR) are proposed for anti-swing and positioning control of the system. First, on the basis of sector nonlinear theory, the two T-S fuzzy models are established by using the virtual control variables and approximate method. Then, considering the uncertainty of the model, robust LQR controllers with parallel distributed compensation (PDC) structure are designed. The feedback gain matrices are obtained by transforming the stability and robustness of the system into linear matrix inequalities (LMIs) problem. In addition, particle swarm optimization (PSO) algorithm is used to overcome the blindness of LQR weight matrix selection in the design process. The proposed control methods are simple, feasible, and robust. Finally, the numeral simulations are carried out to prove the effectiveness of the methods.


Sign in / Sign up

Export Citation Format

Share Document