Thermal Equilibrium Analysis of Loaders’ High-Pressure Hydraulic System

2010 ◽  
Vol 139-141 ◽  
pp. 975-980
Author(s):  
Xiao Bin Wang ◽  
Shu Mei Chen ◽  
He Ting Huang ◽  
Ji Wen Zhuo

The Loaders’ hydraulic transmission system trends towards medium and high-pressure. The research object of this paper is thermal equilibrium of new quantitative medium and high-pressure hydraulic system of type 50 of wheel loader, which is developed by Xiamen Xia Gong (XG) Machinery Co., Ltd. (abbreviated as XGMA). Aim is to research the thermal equilibrium of loader’s hydraulic system before increasing the pressure at 16MPa and prove the simulation results reliability through experiment (max error is 11.57%). The simulation results are thought to be reliable, after ignoring some disturbance factors existing in the practical work. Consequently, loader's thermal equilibrium have been done after increasing pressure to 20MPa, the results of research show that thermal equilibrium will be obviously optimized, it will drop power loss (drop 17%) and improve hydraulic system’s reliability and reduce the cost after pressure was raised.

2013 ◽  
Vol 389 ◽  
pp. 618-622 ◽  
Author(s):  
Zhao Jun Tan ◽  
Yao Jin

The field test results show that existing double-pump confluence hydraulic system with constant displacement pump of wheel loader could only save some energy while the load pressure is rather high (>15Mpa in the tests). However, the load pressure is usually low, especially when the wheel Loader is working on bulldozing operation or just steering and running. Thus, an optimized double-pump confluence hydraulic system was designed by adding a proportional valve and adjust operation rule, so that the output oil of steering pump flow into tank by the proportional valve while the load pressure is low and the relative position of joystick is not large (<72%), and in this way the throttle losses is reduced. Simulation results indicate that the optimized confluence hydraulic system could save 26.2% throttle losses while the wheel Loader is working on bulldozing operation.


2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Kuswanto Kuswanto ◽  
Juan Junius ◽  
Anita Christine Sembiring

Facility layout is integrated planning of the flow of a product in an operating system to obtain the most effective and efficient interrelation between workers, materials, machinery, and equipment as well as handling and transferring materials. A company engaged in furniture manufacturing has a problem in its production process, namely, the distance between machines is too far so that it affects the cost of handling materials. Distant workstations are found on profile machines, milling machines, measuring machines, cutting machines. Therefore, improvements must be made to the layout of facilities on the production floor so that facility layout is efficient and material handling costs are reduced. The problem-solving approach used is the Graph Method and CRAFT Algorithm. The results of the research show that material handling costs are reduced by 7.58% or Rp. 17,765 using the CRAFT algorithm.


Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Adel M. Abdel Dayem

An innovative solar desalination system is successfully designed, manufactured, and experimentally tested at Makkah, 21.4 degN. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 l vertical cylindrical insulated tank. It includes storage, evaporator, and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 l a day per quadratic meter of collector surface area. By that it can produce about 1.6 l/kWh of solar energy. Moreover, the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.


2014 ◽  
Vol 953-954 ◽  
pp. 66-73
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

This paper presents the design of a solar/gas driving double effect LiBr-H2O absorption system. In order to use solar energy more efficiently, a new kind of solar/gas driving double effect LiBr-H2O absorption system is designed. In this system, the high-pressure generator is driven by conventional energy, natural gas, and solar energy together with water vapor generated in the high-pressure generator, which supplies energy to the low-pressure generator for a double effect absorption system. Simulation results illustrate that this kind of system is feasible and economical. Economic evaluation of several systems is also given in this paper in order to get a clear knowledge of the energy consumption of the system.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


2021 ◽  
Vol 3 (4) ◽  
pp. 1-1
Author(s):  
Tran X Phuoc ◽  
◽  
Mehrdad Massoudi ◽  

To store CO2 in geological reservoirs, expansion valves have been used to intentionally release supercritical CO2 from high-pressure containers at a source point to lower-pressure pipelines and transport to a selected injection site. Using expansion valves, however, has some shortcomings: (i) the fluid potential, in the form of kinetic energy and pressure which can produce mechanical work or electricity, is wasted, and (ii) due to the Joule-Thomson cooling effect, the reduction in the temperature of the released CO2 stream might be so dramatic that it can induce thermal contraction of the injection well causing fracture instability in the storage formation. To avoid these problems, it has been suggested that before injection, CO2, should be heated to a temperature slightly higher than that of the reservoir. However, heating could increase the cost of CO2 injection. This work explores the use of a Tesla Turbine, instead of an expansion valve, to harvest the potential of CO2, in the form of its pressure and kinetics, to generate mechanical work when it is released from a high-pressure container to a lower-pressure transport pipeline. The goal is to avoid throttling losses and to produce useful power because of the expansion process. In addition, due to the friction between the gas and the turbine disks, the expanded gas temperature reduction is not as dramatic as in the case when an expansion valve is used. Thus, as far as CO2 injection is concerned, the need for preheating can be minimized.


Author(s):  
Yangbing Zheng ◽  
Xiao Xue ◽  
Jisong Zhang

In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.


2021 ◽  
Vol 6 ◽  
pp. 41
Author(s):  
Hussein A. Kazem ◽  
Anas Quteishat ◽  
Mahmoud A. Younis

Solar water pumping systems are fundamental entities for water transmission and storage purposes whether it is has been used in irrigation or residential applications. The use of photovoltaic (PV) panels to support the electrical requirements of these pumping systems has been executed globally for a long time. However, introducing optimization sizing techniques to such systems can benefit the end-user by saving money, energy, and time. This paper proposed solar water pumping systems optimum design for Oman. The design, and evaluation have been carried out through intuitive, and numerical methods. Based on hourly meteorological data, the simulation used both HOMER software and numerical method using MATLAB code to find the optimum design. The selected location ambient temperature variance from 12.8 °C to 44.5 °C over the year and maximum insolation is 7.45 kWh/m2/day, respectively. The simulation results found the average energy generated, annual yield factor, and a capacity factor of the proposed system is 2.9 kWh, 2016.66 kWh/kWp, and 22.97%, respectively, for a 0.81 kW water pump, which is encouraging compared with similar studied systems. The capital cost of the system is worth it, and the cost of energy has compared with other systems in the literature. The comparison shows the cost of energy to be in favor of the MATLAB simulation results with around 0.24 USD/kWh. The results show successful operation and performance parameters, along with cost evaluation, which proves that PV water pumping systems are promising in Oman.


Sign in / Sign up

Export Citation Format

Share Document