Study on Probabilistic Optimal Design of Diaphragm Spring

2010 ◽  
Vol 148-149 ◽  
pp. 1057-1061 ◽  
Author(s):  
Ruo Ping Wang ◽  
Guo Dong Zhang ◽  
Xiang Gao ◽  
Chang Gao Xia

The mathematical model of probabilistic optimization is established for diaphragm spring. The process and the method of design with an example are presented. The result shows the model and the method of design are feasible, and perfect optimal result is attained. Vehicle has mass production and its conditions of use are changeable, which determine design parameters and operating parameters of its parts have complex randomness. Diaphragm spring clutch is now widely used by many kinds of vehicles. Research of diaphragm spring parameters’ probabilistic and statistics model and the study of its optimal design have great significance for the design, R & D, manufacturing and use of automotive products and parts. Studies in the references[1,2,3] have shown that the root cause of diaphragm spring’s fatigue fracture is the original crackles near the concave inner edge point, so there is a need to do probabilistic optimal design for diaphragm spring’s structural parameters to improve the fatigue life.

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Min-Chie Chiu

Recently, research on new techniques for single-chamber mufflers equipped with perforated resonating tubes has been addressed. However, the acoustical performance of mufflers having a narrow-band sound transmission loss (STL) is insufficient in reducing a broadband venting noise. To improve the acoustical efficiency, a hybrid muffler with chambers composed of perforated intruding inlets is presented. Here, we will not only analyze the STL of three kinds of mufflers (A: a one-chamber muffler hybridized with a perforated resonating tube; B: a two-chamber muffler hybridized with a perforated intruding tube and a resonating tube; and C: a three-chamber muffler hybridized with two perforated intruding tubes and a resonating tube), but also optimize the best design shape within a space-constrained situation. In this paper, both the numerical decoupling technique and simulated annealing (SA) for solving the coupled acoustical problem of perforated tubes are used. A numerical case for eliminating a broadband air compressor noise is also introduced. To verify the reliability of SA optimization, optimal noise abatements for the pure tones (400 Hz and 800 Hz) are exemplified. Before the SA operation can be carried out, the accuracy of the mathematical model is checked using the experimental data. Results indicate that the maximal STL is precisely located at the desired target tones. The optimal result of case studies for eliminating broadband noise also reveals that the overall noise reduction with respect to the mufflers can be reduced from 131.6 dB(A) to 102.1 dB(A), 89.5 dB(A), and 82.1 dB(A). As can be seen, the acoustical performance will increase when the diameters (at the inlet tubes as well as perforated holes) decrease. Moreover, it is obvious that the acoustical performance will be improved when the chambers equipped with perforated intruding inlets are increased. Consequently, a successful approach used for the optimal design of the multichamber mufflers equipped with perforated intruding tubes and a resonating tube within a space-constrained condition has been demonstrated.


Author(s):  
Zhang Bao ◽  
Wang Xiaoping ◽  
Ge Xinfang

To reduce negative stiffness structure’s stiffness non-linearity, enhance its stability during entire working displacement range, and expand its allowable working displacement, the optimal design of negative stiffness structure based on magnetic repulsion is proposed, and its structural parameters are also provided. The new negative stiffness structure’s model is established to determine the structural design parameters. According to the change of the new negative stiffness structure’s stiffness curve, we select the structural parameter to meet the design requirements. In order to verify the effectiveness of the proposed negative stiffness structure, we carried out simulation analysis, and the results show that the optimized negative stiffness structure’s stiffness non-linearity is greatly reduced in a relatively longer displacement, and its stiffness stability is promoted substantially compared with the simple triple-magnet negative stiffness structure.


Author(s):  
Feng Chen ◽  
Deyun Chen ◽  
Lili Wang ◽  
Yang Botao

For the problems of low sensitivity, weak signal of high and low frequency and low signal-to-noise ratio in ECT, the mathematical model of the sensor is established. From the aspects of electrostatic field distribution and soft field effect, the influence of the structural parameters of the sensor on the sensor performance is analyzed. According to the influence of the components of the sensor on the sensitivity, the principle of optimal design is put forward. Based on the optimized Landweber image reconstruction algorithm, an ART image reconstruction algorithm with iterative correction is proposed, and the mathematical model of the algorithm is designed. According to constructing the target functional regularization term in the negative problems of electrical capacitance tomography, the iterative process of the modified art algorithm is deduced, and with adaptive step size, the convergence is speeded and accuracy of image reconstruction is improved. The experimental results show that the semi-convergence in the improved algorithm is obviously weakened, and the reconstructed image quality is better than that of the traditional art algorithm.


2009 ◽  
Vol 628-629 ◽  
pp. 77-82 ◽  
Author(s):  
Zhi Li Zhou ◽  
F.Y. Cao ◽  
L.Y. Xu

Being an important subsystem of hydro-mechanical differential turning system of tracked vehicle, the turning hydraulic system plays the crucial role on turning and running performance of tracked vehicle. The mathematical model and simulated model of turning hydraulic system are established. The dynamic performance of different running parameters and structural parameters of certain tracked vehicle is simulated and analyzed adopting Runge-Kutta four, five step arithmetic in this paper. The theory basis of system optimization design, parameters match and performance analysis of hydro-mechanical differential turning system is provided.


2013 ◽  
Vol 273 ◽  
pp. 198-202
Author(s):  
Yu Xia Wang

In a given power P, number of teeth than u, input speed and other technical conditions and requirements, find out a set of used a economic and technical indexes reach the optimal design parameters, realize the optimization design of the reducer, This paper determined unipolar standard spur gear reducer design optimization of the design variables, and then determine the objective function, determining constraint function, so as to establish the mathematical model.


2011 ◽  
Vol 48-49 ◽  
pp. 779-782
Author(s):  
Wen Chen ◽  
Rong Chun Guo

The integral steering linkage is the key part on vehicle, which can ensure the Ackerman steer angle when steering. in this paper, The mathematical model of the Ackerman steering linkage is established. The author introduces the optimal design program for the Ackerman steering linkage with MATLAB optimtoolbox. With the program, users can obtain optimized calculating results by inputting basic structural parameters. Actual output angle and expected input angle curves variation with input angle is automatically drawn so as to facilitate users for analysis, comparison and selection. The proposed method is accurate and efficient to design the splitting Ackerman steering linkage.


2019 ◽  
Vol 1 (3) ◽  
pp. 1-10
Author(s):  
Mikhail M. Konstantinov ◽  
Ivan N. Glushkov ◽  
Sergey S. Pashinin ◽  
Igor I. Ognev ◽  
Tatyana V. Bedych

In this paper we consider the structural and technological process of the combine used in the process of separate harvesting of grain crops, as well as a number of its parameters. Among the main units of the combine, we allocate a conveyor and devices for removing beveled stems from under the wheels of the vehicle. The principle of operation of the conveyor at different phases of the Reaper and especially the removal of cut stems from under the wheels of the vehicle during operation of the Reaper. The results of theoretical studies on the establishment of the optimal design of the parameters of the belt conveyor are presented, the ranges of their optimal values are considered and determined. Studies on the establishment of optimal parameters of the screw divider in the Reaper, which is the main component of the device for removal of beveled stems, are presented. Taking into account the optimal design and mode of operation of the screw divider, the correct work is provided to remove the cut stems from under the wheels of the harvester.


Author(s):  
Jannes Daemen ◽  
Arvid Martens ◽  
Mathias Kersemans ◽  
Erik Verboven ◽  
Steven Delrue ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2017 ◽  
Vol 24 (14) ◽  
pp. 3206-3218
Author(s):  
Yohei Kushida ◽  
Hiroaki Umehara ◽  
Susumu Hara ◽  
Keisuke Yamada

Momentum exchange impact dampers (MEIDs) were proposed to control the shock responses of mechanical structures. They were applied to reduce floor shock vibrations and control lunar/planetary exploration spacecraft landings. MEIDs are required to control an object’s velocity and displacement, especially for applications involving spacecraft landing. Previous studies verified numerous MEID performances through various types of simulations and experiments. However, previous studies discussing the optimal design methodology for MEIDs are limited. This study explicitly derived the optimal design parameters of MEIDs, which control the controlled object’s displacement and velocity to zero in one-dimensional motion. In addition, the study derived sub-optimal design parameters to control the controlled object’s velocity within a reasonable approximation to derive a practical design methodology for MEIDs. The derived sub-optimal design methodology could also be applied to MEIDs in two-dimensional motion. Furthermore, simulations conducted in the study verified the performances of MEIDs with optimal/sub-optimal design parameters.


Sign in / Sign up

Export Citation Format

Share Document