Dry Sliding Wear Behaviours of Intrinsically Sintered Micro-Arc Oxidation Coatings on Pure Aluminum

2010 ◽  
Vol 154-155 ◽  
pp. 1000-1003 ◽  
Author(s):  
Yong Feng Jiang ◽  
Ying Yue Zhang ◽  
Ye Feng Bao ◽  
Hua Shan Yang

Wear behaviours of micro-arc oxidation (MAO) coatings on pure aluminum in a phosphate based electrolyte were investigated. The surface morphology, cross-section morphology and elements distribution of coatings were observed by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Wear test was proceeded with improved pin-on-disk tester under the dry sliding friction condition at load of 10 N. The results show that coatings structure are poly-porous and uniform, the components in the phosphate electrolyte do not participate in the formation of coatings, coatings are oxidized and sintered intrinsically. Wear weight loss of MAO coatings decrease by a factor of 20 in compare with the pure aluminum substrate, and abrasive wear assisted stripping from micro-cracking is predominant wear mechanism.

2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 446
Author(s):  
Pankaj R Jadhav ◽  
B R Sridhar ◽  
Madeva Nagaral ◽  
Jayasheel I Harti ◽  
V Auradi

The present works manages readiness of the composites by mix stirring method. A356 amalgam 4 wt. % of B4C and A356-4 wt. % of Graphite and A356-4% B4C-4% Graphite hybrid composites were readied. To enhance the wetting and uniform conveyance of the particles, fortifications were preheated to a temperature of 500 Degree Celsius. The arranged MMCs are subjected to examining SEM instrument which affirms the homogenous uniform appropriation of smaller scale B4C and Graphite particles in the lattice combination without agglomeration. The wear protection of arranged composites was examined by performing dry sliding wear test utilizing DUCOM made stick on plate mechanical assembly. The tests were directed at a consistent heap of 3kg and sliding separation of 4000m over a speed of 100, 200 and 300 rpm. So also the other arrangement of investigations were led at consistent sped of 300 rpm and sliding separation of 4000m and with changing heap of 1kg, 2kg, and 3kg. The outcomes demonstrated that the wear protections of the composites were improved than the lattice material.   


2019 ◽  
Vol 9 (5) ◽  
pp. 567-572
Author(s):  
Li Hui ◽  
Jiao Lei ◽  
Miao Chang ◽  
Zhong Wu ◽  
Zhang Xiong ◽  
...  

The AZ91D composites reinforced by 10 wt.% AlN particles were welded via plasma welding and the dry sliding wear properties of the composites were investigated. The influence of welding current, welding speed and plasma flow rate were studied in detail. By using of OM, XRD, EDS and SEM, the crystalline phase, the microstructure and the wear properties were investigated. The experiment result shows that the AlN reinforcing particles is in the shape of strip and have a fine size under the condition of the welding speed 400 mm/min, the welding current 180 A and the plasma flow 2.0 L/min, which reaches 20–30 μm. The matrix grain in the composite were obviously refined, which reaches 60–70 μm. Wear test results showed that the wear rate of welding seam compared base metal decreased by 25%.


2007 ◽  
Vol 534-536 ◽  
pp. 629-632
Author(s):  
Süleyman Tekeli ◽  
Ahmet Güral ◽  
Metin Gürü

The effect of tempering temperature and microstructure on dry sliding wear behavior of quenched and tempered PM steels was investigated. For this purpose, atomized iron powder was mixed with 0.3 % graphite and 1-2 % Ni powders. The mixed powders were cold pressed and sintered at 1200°C. The sintered specimens were quenched from 890°C and then tempered at 200°C and 600°C for 1 hr. Wear tests were carried out on the quenched+tempered specimens under dry sliding wear conditions using a pin-on-disk type machine at constant load and speed. The experimental results showed that the wear coefficient effectively increased with increasing tempering temperature. With increasing Ni content, the wear coefficient slightly decreased at all tempering temperatures due to the high amount of Ni-rich austenitic areas.


2007 ◽  
Vol 534-536 ◽  
pp. 673-676 ◽  
Author(s):  
Ahmet Güral ◽  
Süleyman Tekeli ◽  
Dursun Özyürek ◽  
Metin Gürü

The effect of repeated quenching heat treatment on microstructure and dry sliding wear behavior of low carbon PM steel was investigated. For this purpose, atomized iron powder was mixed with 0.3 % graphite and 1 % Ni powders. The mixed powders were cold pressed and sintered at 1200°C for 30 min under pure Ar gas atmosphere. Some of the sintered specimens were intercritically annealed at 760°C and quenched in water (single quenching). The other sintered specimens were first fully austenized at 890°C and water quenched. These specimens were then intercritically annealed at 760°C and re-quenched in water. The martensite volume fraction in the double quenched specimens was higher than that of the single quenched specimen. Wear tests were carried out on the single and double quenched specimens under dry sliding wear condition using a pin-on-disk type machine at constant load and speed. The experimental results showed that the wear coefficient effectively decreased in the double quenched specimen.


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


2013 ◽  
Vol 721 ◽  
pp. 303-307
Author(s):  
Hong Xu ◽  
Yi Chao Ding ◽  
Jing Wang

(Ti,V)C particles reinforced Fe-based surface composite coatings were fabricated by in-situ synthesis and powder metallurgy route. The microstructure and wear properties were investigated by scanning electron microscopy and dry sliding wear test. The results show that fine (Ti,V)C particulates distribute uniformly in pearlite matrix; when V/Ti atomic ratio is 0.4, the wear weight loss of the composites achieve minimum.


2019 ◽  
Vol 895 ◽  
pp. 200-205
Author(s):  
B.S. Kanthraju ◽  
Bheemappa Suresha ◽  
H.M. Somashekar

This paper presents the effect of zirconia filler on mechanical properties and dry sliding wear of bidirectional hybrid (glass and basalt fiber) fabric reinforced epoxy (G-B/E) composites. Fabrication was done by hand layup method followed by compression molding. The effect of zirconia filler loading on mechanical characteristics like hardness, tensile and flexure of fabricated G-B/E composites were determined according to ASTM standards. Also, wear behavior under dry sliding condition was performed using pin-on-disc machine for different applied normal loads/sliding distance. Experimental results reveal that incorporation of zirconia filler improves the mechanical properties. Further, the wear test results indicated addition of zirconia into G-B/E hybrid fiber composites plays important role on specific wear rate under the tribo-conditions selected for the study. Further, inclusion of zirconia into G-B/E composites shows improved wear resistance and addition of 6 wt. % of zirconia exhibits least specific wear rate compared to other hybrid G-B/E composites. In addition, Scanning electron microscope images of selected mechanical test fractured coupons also have been discussed.


Sign in / Sign up

Export Citation Format

Share Document