Numerical Simulation for Failure Modes of Reinforced Concrete Beams under Blast Loading

2010 ◽  
Vol 163-167 ◽  
pp. 1359-1363
Author(s):  
Xiu Hua Zhang ◽  
Yan Yan Wu ◽  
Jun Wang

The reinforced concrete (RC) beams have three failure modes using large-scale finite element procedure LS-DYNA to simulate dynamic responses and failure modes of RC beams under blast loading. Holmquist-Johnson-Cook material model was used in concrete, the damage and strain rate effects were considered the kinematic hardening plasticity material model was used in reinforcing bars. With different rebar ratios and charges of weight TNT equivalent and stand-off distance were investigated and discussed. The numerical simulation can predict responses and flexure, flexure-shear and direct shear of the RC beams under different blast loading. The influence of the several factors have been identified and provided a theoretical basis for blast resistant design and retrofitting of the RC beam.

2011 ◽  
Vol 94-96 ◽  
pp. 1318-1321
Author(s):  
He Fan ◽  
Ze Fan

Fire-resistance performance experiments with static loading-fire are investigated about two carbon fiber sheet (CFS) shear strengthened reinforced concrete (RC) beams exposed to the ISO834 standard fire. Shear strengthened RC beams are wrapped with fire insulation material- thick painted fire retardant coatings. Relationship between measure points’ temperature and time are achieved. The results suggest that: the ratio of shear-span is the main factor to fire-resistance rating and failure modes of CFS shear strengthened RC beams in fire; shear-failure fire-resistance rating are increased by thickening fire insulation to shear strengthened RC beams. A computer program is developed to calculate the temperature fields of fire insulated concrete beams shear strengthened with CFS coated thick fireproof material. This program is validated comparing with experimental results. Researches can give a supplement to produce overall fire-resistance factors of CFS shear strengthened reinforced concrete beams at high temperatures.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6400
Author(s):  
Binbin Zhou ◽  
Ruo-Yang Wu ◽  
Yangqing Liu ◽  
Xiaohui Zhang ◽  
Shiping Yin

Through proper arranging of a hybrid combination of longitudinal fiber reinforced polymer (FRP) bars and steel bars in the tensile region of the beam, the advantages of both FRP and steel materials can be sufficiently exploited to enhance the flexural capacity and ductility of a concrete beam. In this paper, a methodology for the flexural strength design of hybrid FRP-steel reinforced concrete (RC) beams is proposed. Firstly, based on the mechanical features of reinforcement and concrete and according to the latest codified provisions of longitudinal reinforcement conditions to ensure ductility level, the design-oriented allowable ranges of reinforcement ratio corresponding to three common flexural failure modes are specified. Subsequently, the calculation approach of nominal flexural strength of hybrid FRP-steel RC beams is established following the fundamental principles of equilibrium and compatibility. In addition to the common moderately-reinforced beams, the proposed general calculation approach is also applicable to lightly-reinforced beams and heavily-reinforced beams, which are widely used but rarely studied. Furthermore, the calculation process is properly simplified and the calculation accuracy is validated by the experimental results of hybrid FRP-steel RC beams in the literature. Finally, with the ductility analysis, a novel strength reduction factor represented by net tensile steel strain and reinforcement ratio is proposed for hybrid FRP-steel RC beams.


2020 ◽  
Vol 39 (1) ◽  
pp. 105-112
Author(s):  
N. Yusuf ◽  
J.M. Kaura ◽  
A. Ocholi ◽  
M. Abbas

In this study, experimental research is carried out to assess the flexural performance of RC beams strengthened with different amount of CFRP laminates at the tension face. Twelve rectangular RC beams were fabricated and three are un-strengthened and used as reference beams and the remaining nine are strengthened with different amount of CFRP varying from single to triple layers and all are tested to failure under three points bending test. The increase of ultimate strength provided by the bonded CFRP laminates is assessed and failure modes is identified and compared to the un-strengthened RC beams. The results indicated that the flexural capacity of the beams was significantly improved as the amount of the laminates increases that ranged from 20% to 52% increased for single to triple layers laminates. It is concluded that the attachment of CFRP laminates has substantial influence on the performance of CFRP strengthened RC beams. Based on the observed results, recommendations are made that externally application of CFRP laminates can be used for a significant enhancement of the strength deficient RC beams in increasing the ultimate load carrying capacity. Keywords: CPRP laminate, Reinforced concrete, ductility, index, epoxy resin, flexural strengthening


2011 ◽  
Vol 335-336 ◽  
pp. 1186-1189
Author(s):  
He Fan ◽  
Jun Yu Liu ◽  
Bao Kuan Ning

Fire-resistance performance experiments with static loading-fire are investigated about one carbon fiber sheet(CFS) shear strengthened and one without CFS strengthened reinforced concrete (RC) beams exposed to the ISO834 standard fire. Shear strengthened RC beams are wrapped with fire insulation material- thick painted fire retardant coatings. Relationship between measure points temperature, displacement and time are achieved. The results suggest that: the ratio of shear-span is the main factor to fire-resistance rating and failure modes of CFS shear strengthened RC beams in fire; shear-failure fire-resistance rating are increased by thickening fire insulation to shear strengthened RC beams; mid-span deflection of shear failure is approximate one half of bending failure when shear strengthened RC beams.


2016 ◽  
Vol 860 ◽  
pp. 144-147 ◽  
Author(s):  
Arslan Qayyum Khan ◽  
Qudeer Hussain ◽  
Winyu Rattanapitikon ◽  
Amorn Pimanmas

The present study is conducted to examine the effectiveness of sisal fiber in flexural strengthening of reinforced concrete (RC) beams. In order to obtain this objective, two different strengthening configurations are adopted (use of sisal fiber composites and use of sisal fiber rods). A total of five flexural strengthened reinforced concrete beams are instrumented and tested using a four point bending setup. The results for strength, stiffness and failure modes are discussed for the both strengthening configurations. The results demonstrate that both sisal fiber composites and sisal fiber rods are effective in enhancing ultimate load carrying capacity of RC beams. The beams strengthened with sisal fiber rods showed higher increase in ultimate load as compared with the beams strengthened with sisal fiber composites layers.


2017 ◽  
Vol 3 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Mohammed A Sakr

Numerous studies of the response of reinforced concrete members under cyclic loadings, many of which have been summarized and have indicated that, in general, the flexural strength of under-reinforced beams remains unimpaired under cyclic loadings consisting of a reasonable number of cycles. However, there is a body of evidence indicating that their shear strength may suffer under such loadings. The first objective of the current study is to construct an accurate 2D shell finite element model of reinforced concrete beams under cyclic loadings. The second objective is carrying out a parametric study on reinforced concrete beams, using the suggested 2D shell model.  The objective of this study was to observe the effect of the stirrup spacing, steel-to-concrete bond properties on the performance of reinforced concrete beams under cyclic loadings. For this purpose, an efficient and accurate finite element model was established taking into account the compression and tensile softening introducing damage in the concrete material, the Baushinger effect using nonlinear isotropic/kinematic hardening in the steel and an adequate bond-slip law for the concrete–steel interface. The simulated results of numerical models were verified by experimental results available in literature in order to validate the proposed model, including hysteretic curves, failure modes, crack pattern and debonding failure mode. The model provided a strong tool for investigating the performances of reinforced concrete beam. The results showed that: Cyclic loadings may change the failure mode of the beam to bond failure even though it has sufficient bond length to resist static loadings. So that under cyclic loadings additional anchorage length must be taken, cyclic loadings also influence the ductility and peak load for beams fail in shear. All these topics are of the utmost importance to RC behaviour to be considered by construction codes.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3322
Author(s):  
Abdulaziz I. Al-Negheimish ◽  
Ahmed K. El-Sayed ◽  
Mohammed A. Al-Saawani ◽  
Abdulrahman M. Alhozaimy

Plate end (PE) debonding is one of the critical debonding failure modes that may occur in reinforced concrete (RC) beams strengthened with externally bonded fiber reinforced polymers (FRPs). This study investigated the effect of internal steel stirrups on the PE debonding failure load of FRP-strengthened RC beams. The dimensions of the beams were 3400 × 400 × 200 mm. The beams were strengthened with carbon FRP (CFRP) sheets bonded to the soffit of the beams. The beams were divided into two series based on the distance of the cutoff point of the CFRP sheets from the nearest support. This distance was 50 mm or 300 mm, and the amount of steel stirrups was varied in terms of varying the stirrup diameter and spacing. The beams were simply supported and tested under four-point bending. The test results indicate that the effect of stirrups on the load carrying capacity of the beams was more pronounced for the beams with CFRP sheets extended close to the supports. It was also indicated that beams with larger amounts of stirrups failed in PE debonding by concrete cover separation while beams with lower amounts of stirrups failed in PE by either PE interfacial debonding or critical diagonal crack-induced debonding. The beams were analyzed using several analytical models from design guidelines and the literature. The result of analysis indicates that most of the available models failed to reflect the effect of stirrups in predicting PE debonding failure load of the beams. On the other hand, the models of El-Sayed et al. and Teng and Yao were able to capture such an effect with the best predictions provided by El-Sayed et al. model.


2015 ◽  
Vol 744-746 ◽  
pp. 315-318
Author(s):  
Hao Du ◽  
Chun Hua Liu

The terrorism and regional conflicts posed a threat to the world peace. Some terrorist explosions caused collapse of the buildings, which brought heavy tragedies to the human components. Therefore research on damage of structural components and resistance to damage have become the focus of our attention. Finite element software LS-DYNA was applied to simulating the response of reinforced concrete columns under blast loading. And analysis on dynamic response under different loading period was carried out. By studying on the stress and strain of reinforced concrete columns subjected to blast loading, the possible failure modes were obtained. In addition, the bearing capacities of concrete columns that are reinforced with carbon fiber and steel panel were analyzed, and the reinforcement effects were compared to provide reasonable reinforcement schemes for structures blast-resistant design.


2019 ◽  
Vol 27 (3) ◽  
pp. 44-54
Author(s):  
Radhika Sridhar ◽  
Ravi Prasad

AbstractThis paper describes an experimental investigation on mono steel and polypropylene (PP) fiber-reinforced concrete beams. The main aim of this present study is to evaluate undamaged and damaged reinforced concrete (RC) beams incorporated with mono fibers such as steel and PP fibers under free-free constraints. In this experimental work, a total of nine RC beams were cast and analyzed in order to study the dynamic behavior as well as the static load behavior of steel fiber-reinforced concrete (SFRCs) and polypropylene fiber-reinforced concrete (PPFRCs). Damage to the SFRC and PPFRC beams was obtained by cracking the concrete for one of the beams in each set under four-point bending tests with different percentage variations of the damage levels such as 50%, 70% and 90% of the maximum ultimate load. The fundamental natural frequency and damping values obtained through the dynamic tests for the SFRC and PPFRC beams were compared with a control RC beam at each level of damage that had been acquired through static tests. The static experimental test results emphasize that the SFRC beam has attained a higher ultimate load compared with the control RC beam.


2021 ◽  
Author(s):  
Haitham Al-Thairy ◽  

This paper suggests and validates a simplified analytical method for the analysis of hybrid steel and FRP reinforced concrete beams. The proposed method determines the flexural strength of the concrete beams based on strain compatibility and force equilibrium of the beam section under pure bending moment. The suggested method was validated against different experimental test results with very reasonable agreement. Afterward, the validated method was used to conduct parametric study to investigate the effect of two important parameters on the response and failure modes of hybrid steel and FRP RC beams. The proposed method can be implemented in the analysis and design of hybrid reinforced concrete beams with different reinforcement materials.


Sign in / Sign up

Export Citation Format

Share Document