Seismic Performance on Dumbbell-Shape Connection between Steel Beams and Rectangular Concrete-Filled Tubular Column

2010 ◽  
Vol 163-167 ◽  
pp. 4546-4554
Author(s):  
Xiu Li Wang ◽  
Qiong Li

Referancing to the connection characteristic and mechanical behavior as well as the defects in application of joints on concrete-filled steel tube between columns and beams, a new connection type of steel beam throughout joints model is proposed. The inner force transfer mechanism and stress distribution situation of the joint under the monotonous load and hysteretic behavior, ductility, energy dissipation under cyclically lateral load are analyzed using the software ANSYS. The result indicated that the stress of steel pipe is reduced effectively when continious web plate joint is used. Meanwhile, the rigidity of the joint is enhancedand. It is also accord with the seismic design concepts, that is “strong column-weak beam“. During this process of the jiont working, plastic hinge occurs out of joint area on the beam. The hysteretic curves of all the specimens are of a plump shuttle shape .The curves don’t show strength deterioration and stiffness degradation obviously. All these show that this type of joint is effective.

2020 ◽  
pp. 136943322098166
Author(s):  
Shuhao Yin ◽  
Bin Rong ◽  
Lei Wang ◽  
Yiliang Sun ◽  
Wuchen Zhang ◽  
...  

This paper studies the shear performance of the connection with the external stiffening ring between the square steel tubular column and unequal-depth steel beams. Two specimens of interior column connections were tested under low cyclic loading. The deformation characteristics and failure modes exhibited by the test phenomena can be summarized as: (1) two specimens all exhibited shear deformation in steel tube web of the panel zone and (2) weld fracture in the panel zone and plastic hinge failure at beam end were observed. Besides, load-displacement behaviors and strain distributions have been also discussed. The nonlinear finite element models were developed to verify the test results. Comparative analyses of the bearing capacity, failure mode, and load-paths between the equal-depth and unequal-depth beam models have been carried out.


2012 ◽  
Vol 166-169 ◽  
pp. 98-103
Author(s):  
Yun Shi ◽  
Ming Zhou Su ◽  
An Liang Song

A nonlinear 3D solid model of hybrid coupled wall system with steel boundary elements has been founded by using FEM software ABAQUS to study its hysteretic behavior under cyclic loading, which considering the geometric large deformation and materials nonlinearity. To verify the efficiency of the model, two specimens with various coupling ratios of 30% and 45% are analyzed, and the results of analysis are compared with test ones. As the bearing capacities of both agree well in different loading stages, so the FEM model has enough accuracy and could be used to study the seismic behavior of hybrid coupled wall system with steel boundary elements. In addition, the results show that this new system dissipates energy by shear deformation of steel beams along and plastic hinge deformation at the bottom of wall, so it has better seismic performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yufen Zhang ◽  
Dongfang Zhang ◽  
Krushar Demoha

This paper firstly studied the internal force transfer mechanism of vertical stiffener joints in concrete-filled double steel tubular (CFDST) frame structures on the basis of finite element modeling (FEM). Analytical models of shear force and bending moment were established through the appropriate material constitutive equations and equilibrium theory. Then, the proposed models were used to predict and evaluate the shear and bending resistance of the vertical stiffener joint. Six joint specimens were tested to verify the rationality of the theoretical models, and the design suggestions for construction were subsequently discussed. The analysis indicated that the vertical stiffener together with the anchorage web played a dominated role in the internal force transfer mechanism. The computed bending resistance obtained by the tension model agreed well with the measured experimental data, and the shear resistance in the panel zone was sufficient to guarantee the ductile failure in the test. The vertical stiffener determined the plastic hinge so as to ensure the strong connection between the CFDST column and the steel beam. The ribbed anchorage web was an effective way of increasing the shear and bending resistance.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2381
Author(s):  
Jing Ji ◽  
Wen Zeng ◽  
Liangqin Jiang ◽  
Wen Bai ◽  
Hongguo Ren ◽  
...  

In order to acquire the hysteretic behavior of the asymmetrical composite joints with concrete-filled steel tube (CFST) columns and unequal high steel beams, 36 full-scale composite joints were designed, and the CFST hoop coefficient (ξ), axial compression ratio (n0), concrete cube compressive strength (fcuk), steel tube strength (fyk), beam, and column section size were taken as the main control parameters. Based on nonlinear constitutive models of concrete and the double broken-line stress-hardening constitutive model of steel, and by introducing the symmetric contact element and multi-point constraint (MPC), reduced-scale composite joints were simulated by ABAQUS software. By comparing with the test curves, the rationality of the modeling method was verified. The influence of various parameters on the seismic performance of the full-scale asymmetrical composite joints was investigated. The results show that with the increasing of fcuk, the peak load (Pmax) and ductility of the specimens gradually increased. With the increasing of n0, the Pmax of the specimens gradually increases firstly and then gradually decreases after reaching a peak point. The composite joints have good energy dissipation capacity and the characteristic of stiffness degradation. The oblique struts force mechanism in the full-scale asymmetrical composite joint domain is proposed. By introducing influence coefficients (ξ1 and ξ2), the expression of shear bearing capacity of composite joints is obtained by statistical regression, which can provide theoretical support for the seismic design of asymmetrical composite joints.


2011 ◽  
Vol 250-253 ◽  
pp. 1287-1292
Author(s):  
Man Rong Song ◽  
Bing Kang Liu ◽  
Shen Jiang Huang ◽  
An Zhou

Based on the low reversed cyclic loading experiment of a specimen of three-story prestressed fabricated concrete frame, this paper investigates the carrying capacity, the failure mode, the load-displacement hysteresis curve of frame. The research includes the seismic performances such as failure mechanism, rigidity degradation, hysteretic behavior and etc. The results indicate that the plastic hinge first appears at the ends of beam at lower story. The connections of frame are in a state of bi-direction compression and have more joint stiffness, which therefore enhances the frame lateral stiffness and improves the deformation recovery capability. The carrying capacity of the frame hasn’t serious degradation at story drifts between 1/39 and 1/64. The post-tensioned prestressed fabricated concrete frame is a “strong column weak beam” structure.


2009 ◽  
Vol 417-418 ◽  
pp. 845-848 ◽  
Author(s):  
Chang Wang Yan ◽  
Jin Qing Jia ◽  
Ju Zhang

In order to investigate the seismic damage and performance of steel reinforced ultra high strength concrete composite joint subjected to reversal cycle load, six interior strong-column-weak-beam joint specimens were tested with various axial load ratio and volumetric stirrup ratio. A discussion on the crack mode and ductility was presented. It was found that all joint specimens failed in bending with a beam plastic hinge in a ductile manner, with crack propagation different from the weak-column-strong-beam joint. The experimental results indicated that test parameters of the steel reinforced ultra high strength concrete composite joint with good seismic performance may be referred for engineering application.


2009 ◽  
Vol 417-418 ◽  
pp. 833-836 ◽  
Author(s):  
Qing Xiang Wang ◽  
Shi Run Liu

The test results of six connections under cyclic loading are presented in the paper. Each test specimen was properly designed to model the interior joint of a moment resisting frame, and was identically comprised of three parts that including the circular concrete filled steel tube columns, the reinforced concrete beams, and the short fabricated connection stubs. Energy dissipation was designed to occur in the beams during a severe earthquake. Steel bars which were embedded into concrete core and welded to the connection stubs, were used to transfer the force distributed by the reinforcing bars of concrete beam to the concrete core. The results indicated that the embedded steel bars were very efficient in eliminating the stress concentration on the tube wall and there was no visible deformation occurred on the tube wall until the collapse of the specimen. Furthermore, the connection of each specimen had enough capacity and thus the plastic hinge appeared in the beams. As results, the ductility of this new type structure directly depended on the RC beams.


2011 ◽  
Vol 94-96 ◽  
pp. 668-673
Author(s):  
Yan Wang ◽  
Li Ya Zhang ◽  
Shuang Feng ◽  
Xiang Gao

14 models of plate-reinforced connections are analyzed by finite element software ANSYS. Failure mode, hysteretic behavior, ductility and energy dissipation capacity are comparatively studied. Results show that plastic hinge formed at the end of the reinforced plate, hysteretic cruves are full and the connections have good ductility. With the increase in length and thickness of the reinforced plate, bearing capacity increases while hysteretic behavior and ductility factor decrease. If the reinforced plate is longer than the length that design requires, brittle failure occurs in the panel zone. The recommended length of the reinforced plate is defined as 0.5-0.8 times of beam depth, the thickness of flange-plate is 1.2-1.4 times of flange thickness and the thickness of cover-plate is 0.7-1.2 times of flange thickness.


Sign in / Sign up

Export Citation Format

Share Document