Experiment Study on Cyclic Behavior of Concrete Filled Steel Tube (CFST) Column-Reinforced Concrete (RC) Beam Connections

2009 ◽  
Vol 417-418 ◽  
pp. 833-836 ◽  
Author(s):  
Qing Xiang Wang ◽  
Shi Run Liu

The test results of six connections under cyclic loading are presented in the paper. Each test specimen was properly designed to model the interior joint of a moment resisting frame, and was identically comprised of three parts that including the circular concrete filled steel tube columns, the reinforced concrete beams, and the short fabricated connection stubs. Energy dissipation was designed to occur in the beams during a severe earthquake. Steel bars which were embedded into concrete core and welded to the connection stubs, were used to transfer the force distributed by the reinforcing bars of concrete beam to the concrete core. The results indicated that the embedded steel bars were very efficient in eliminating the stress concentration on the tube wall and there was no visible deformation occurred on the tube wall until the collapse of the specimen. Furthermore, the connection of each specimen had enough capacity and thus the plastic hinge appeared in the beams. As results, the ductility of this new type structure directly depended on the RC beams.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2019 ◽  
Vol 278 ◽  
pp. 03002
Author(s):  
Anatoly Krishan ◽  
Mariia Astafeva

The advantages of short concrete filled steel tube columns with a precompressed concrete core are presented in the article. Particular cases, where such compression is most appropriate, are listed. Taking into consideration the structural features of concrete filled steel tube columns it is recommended to calculate their bearing capacity on the basis of deformation model of reinforced concrete. The reliability of this calculation will be largely dependent on the conformity of the accepted diagram of the concrete core deformation with its actual behavior. Formulas for determining the strength of precompressed concrete core and the ultimate strain of its shortening are proposed, which allow constructing the sufficiently accurate deformation diagram.


2021 ◽  
pp. 136943322110015
Author(s):  
Lei Xu ◽  
Yan-Hong Bao

To reveal the temperature characteristics and mechanical properties of frame structures with concrete filled steel tube reinforced concrete (CFSTRC) columns under fire, the fire resistance of four planar frames consisting of CFSTRC columns and reinforced concrete (RC) beams subjected to ISO-834 standard fire was tested in this study. The test parameters included the column fire load ratio, beam fire load ratio, and beam-to-column linear stiffness ratio. In the test, the temperatures of the column, beam, and slab cross-sections in the joint and nonjoint zones were measured, and the fire resistance, beam and column deformation curves, and failure modes of the frame were investigated. The experimental results showed that the concrete volume was the main factor affecting the temperature distribution on each typical cross-section of the frame: the temperatures at the measuring points of the beam and column in the joint zone were significantly lower than the temperatures at the corresponding points in the nonjoint zone, and the concrete outside the steel tube significantly slowed the propagation of temperature to the steel tube and its concrete core. Hence, there was only a small loss of the bearing capacity of steel tube and the core concrete inside the steel tube. The column fire load ratio, beam fire load ratio, and beam-to-column linear stiffness ratio have obvious influences on the fire resistance: the larger the column fire load ratio or beam fire load ratio, the smaller the fire resistance; and the larger the beam-to-column linear stiffness ratio, the larger the fire resistance.


2012 ◽  
Vol 535-537 ◽  
pp. 1803-1806
Author(s):  
Shun Bo Zhao ◽  
Peng Bing Hou ◽  
Fu Lai Qu

An experimental study was carried out to examine the non-uniform corrosion of plain steel bars in reinforced concrete beams partially placed in 5% sodium chloride solution under conditions of accelerated corrosion. 4 reinforced concrete beams with different concrete strength were made. The crack distributions of the beams due to pre-loads and expansion of corrosion product, and the sectional corrosion characteristics of plain steel bars are described in detail. The sectional area loss relating to mass loss and change along pure bending length of the beams are discussed. These can be used as the basis of test for further studies to build the numerical models of serviceability of corroded reinforced concrete beams.


2013 ◽  
Vol 671-674 ◽  
pp. 833-837
Author(s):  
Yang Wen ◽  
Fei Zhou

In order to discuss the failure mechanism of concrete filled steel tube lattice wind generator tower joints. Based on the parameters of web member section form, and using nonlinear static numerical simulation, this dissertation research on the stressed complex joints. The results of the study show that the abdominal rod for circular steel tubes joint (JD1) is instability failure which is led to the local buckling of compressive bar; the abdominal rod for single angle steel (JD2) or double angle steel (JD3) joint is instability failure because of the local buckling of the joint board. Under the web members and joint boards all fitting their own capacity requirements, JD1 is very easy to make draw bar broken on both sides of the pillar tube wall region, JD2 and JD3 are apt to damage on the weak positions of joint board ends and pillar tube wall joint. In the three forms of web member joints, the best ultimate bearing capacity is JD1 , JD3 is the second and JD2 is minimum.


2017 ◽  
Author(s):  
Chee Ghuan Tan ◽  
Wei Ting Chia ◽  
Taksiah A. Majid ◽  
Fadzli Mohamed Nazri ◽  
Mohd Irwan Adiyanto

Sign in / Sign up

Export Citation Format

Share Document