Investigation on Hydration Characteristics of Zinc-Doped Portland Cement Pastes

2010 ◽  
Vol 168-170 ◽  
pp. 623-627 ◽  
Author(s):  
Xiang Guo Li ◽  
Xiao Bo Yin ◽  
Bao Guo Ma ◽  
Bei Wu ◽  
Quanbin Chen ◽  
...  

Compressive strength, setting time, hydration heat and hydration product were investigated to evaluate the effects of Zn2+ ion concentrations and the anion of zinc salts on the hydration characteristics of Portland cement paste. The results show that the hydration characteristics of zinc-doped cement pastes depend on Zn2+ ion concentrations and the anion of salts. With the incorporation of ZnCl2, the hydration heat, exothermic rate and the early-age strength of cement pastes were reduced, the arrival time of the highest temperature was delayed, and little negative influences on the compressive strength at 28 days were observed. The total hydration did not decrease incorporating ZnSO4; the hydration exothermic process was delayed. There were little negative influences on the compressive strength of the samples at 3 days and 28 days. Moreover, for the samples with the same Zn concentration, the retardation effect of ZnCl2 samples was stronger than that of ZnSO4 samples.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Wang ◽  
Geng Yao ◽  
Xiangnan Zhu ◽  
Junxiang Wang ◽  
Peng Wu ◽  
...  

The disposal of gold ore tailings (GTs) has been a very difficult problem for a long time. Thus, this study explored a new approach to the management of GTs by preparing Portland cement. Physical properties, reaction mechanisms, and hydration product types of cement prepared with GTs (C-GTs) and ordinary Portland cement (C-SS) were compared. X-ray diffraction (XRD), thermogravimetric (TG), and scanning electron microscope energy-dispersive spectroscopy (SEM-EDS) analysis techniques were used to study the mineralogical phases of the clinker and raw materials, hydration product types, and microtopography. The consistency, setting time, flexural strength and compressive strength values of the cement samples (C-GTs and C-SS), and burnability of the raw materials were also studied. The burnability analysis indicated that GTs provided a higher reactivity. The XRD results showed that the clinker phases of the C-GTs were C3S, C2S, C3A, and C4AF. The XRD, TG, and SEM-EDS results showed that the hydration products were flaky calcium hydroxide, rod-shaped ettringite, and granular C-S-H gels. Its compressive strength and flexural strength were, respectively, 30.4 MPa and 6.1 MPa at the curing age of 3 days and 59.1 MPa and 9.8 MPa at the curing age of 28 days, which were slightly higher than those of the C-SS. Furthermore, the results showed that the consistency, initial setting time, and final setting time for the two kinds of cement were similar, which further suggested that GTs could be used to prepare Portland cement.


2020 ◽  
Vol 20 (4) ◽  
pp. 225-241
Author(s):  
Josué Claudio Metz ◽  
Elenize Ferreira Maciel ◽  
Marilise Garbin ◽  
Regina Célia Espinosa Modolo ◽  
Carlos Alberto Mendes Moraes ◽  
...  

Abstract Studies have indicated that the use of electric arc furnace dust (EAFD) results in a delay in the hydration time of Portland cement. Calcium-rich waste such as lime kiln waste (LKW) is one of the techniques used to offset this delay as it accounts for the lack of this element in calcium silicate hydrate (C-S-H) production in the mixture. The objective of this study was to evaluate the influence of electric arc furnace dust (EAFD) and lime kiln waste (LKW) in the hydration process of Portland cement pastes and their influence in setting time and hydration heat. The methodology used required several steps: physiochemical and micro-structural characterization of waste samples; definition and production cement pastes with different levels of waste substitution and a reference paste and evaluation of the cement pastes with respect to setting time and hydration heat. Results showed that the substitution of 1% EAFD with or without LKW presented similar hydration heats as the reference paste. This indicated that EAFD+LKW substitution would not affect substantially the hydration reactions of cement and could allow waste recycling in construction materials.


2011 ◽  
Vol 343-344 ◽  
pp. 322-326 ◽  
Author(s):  
Pailyn Thongsanitgarn ◽  
Watcharapong Wongkeo ◽  
Sakprayut Sinthupinyo ◽  
Arnon Chaipanich

In this study limestone powders with different particle sizes of 5, 10 and 20 μm were used to replace a part of Portland cement in different replacement levels to produce Portland-limestone cement pastes. The percentages of limestone replacement are 0, 5, 7.5, 10, 12.5, 15 and 20% by weight. The effect of fineness and the amount of limestone powders on compressive strength and setting time are investigated. It has been established that limestone replacement causes reduce the compressive strength due to the dilution effect, but it can reduce energy consumption and CO2 emission in cement manufacturing. The fineness of limestone powder used has influence on the observed compressive strength values. From the standard consistency results, it seems that limestone has no effect on water requirement compared to Portland cement. Moreover, the increase in level of fine particles would require much water. Both initial and final setting times were decreased with an increase in the amount of limestone. Furthermore, at the same level replacement, the cement pastes using 5 μm of limestone show lower setting time than those using 10 and 20 μm, respectively.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2390
Author(s):  
Min Pang ◽  
Zhenping Sun ◽  
Ming Chen ◽  
Jianlei Lang ◽  
Jiayan Dong ◽  
...  

Influences of phosphorus slag from 10% to 50% (by mass) on the setting time and the water requirement of the normal consistency of cement pastes, flowability, resistance to carbonation, and the compressive strength of cement mortars were investigated. The physical activation by improving fineness and the chemical activation by adding the chemical activator were evaluated by the compressive strength of cement mortars with 30% by mass of phosphorus slag. Hydration heat, X-ray diffraction, and scanning electron microscopy were used to study the microstructure of cement pastes and mortars with 30% by mass of phosphorus slag and the chemical activator. Results showed that the setting time of cement pastes was delayed by phosphorus slag from 10% to 50%. Phosphorus slag had nearly no effects on the water requirement of the normal consistency of cement pastes and the flowability of cement mortars. The resistance to carbonation of cement mortars was decreased by phosphorus slag from 10% to 50% according to the acceleration carbonation. The compressive strength of cement mortars was also decreased by phosphorus slag from 10% to 50% and the low activity of phosphorus slag was concluded based on compressive strength of cement mortars. The effect of the chemical activator on the compressive strength of cement mortars with 30% by mass of phosphorus slag was better than improving fineness of phosphorus slag from 300 m2/kg to 450 m2/kg. Both hydration heat and cement hydrates were inhibited by phosphorus slag and could be partly compensated by the chemical activator. Loose morphology and propagations of microcracks were found in cement pastes and mortars with 30% by mass of phosphorus slag.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fujie Jia ◽  
Yan Yao ◽  
Jingyu Wang

A kind of microcapsule sustained-release–type hydration heat inhibitor (MSR) was prepared. The effect of MSR on semi-adiabatic temperature rise, setting time, and strength of low-heat Portland cement was investigated. Microcalorimetry, XRD, SEM, and TG-DSC were used to investigate the mechanism of MSR on hydration of low-heat Portland cement. The results showed that the MSR had good regulating effect on hydration of low-heat Portland cement. When the dosage of MSR was 0.3%, the heat release rate decreased by 10% and the peak temperature decreased by 52%. The 3D compressive strength decreased by 50%, and the 28-day strength was the same as control. The MSR can delay the hydration of low-heat Portland cement by inhibiting the heat release rate of C2S and C3S minerals.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 731
Author(s):  
Chunlong Huang ◽  
Zirui Cheng ◽  
Jihui Zhao ◽  
Yiren Wang ◽  
Jie Pang

The ferrite aluminate cement (FAC) could rapidly lose fluidity or workability due to its excessive hydration rate, and greatly reduce the construction performance. Chemical admixtures are commonly used to provide the workability of cement-based materials. In this study, to ensure required fluidity of FAC, chemically different water reducing agents are incorporated into the FAC pastes. The experiments are performed with aliphatic water reducing agent (AP), polycarboxylic acid water reducing agent (PC) and melamine water reducing agent (MA), respectively. Influence of the water reducing agents on fluidity, setting time, hydration process, hydration product and zeta potential of the fresh cement pastes is investigated. The results show that PC has a better dispersion capacity compared to AP and MA. Besides decreasing water dosage, PC also acts as a retarder, significantly increasing the setting times, delaying the hydration rate and leading to less ettringite in the hydration process of FAC particles. The water reducing agents molecules are adsorbed on the surface of positively charged minerals and hydration products, however, for PC, steric hindrance from the long side chain of PC plays a critical role in dispersing cement particles, whereas AP and MA acting through an electrostatic repulsion force.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


2007 ◽  
Vol 72 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Gordana Stefanovic ◽  
Ljubica Cojbasic ◽  
Zivko Sekulic ◽  
Srdjan Matijasevic

Fly ash (FA) can be used in cement mixtures with certain limitations. The problem of the mentioned mixtures lies in the insufficient activity of the particles of FA in the reactions which are important for the establishment of the mechanical characteristics of cement. This is particularly true for the hydration reactions. As a result of this, cement pastes formed by mixing ash and clinker have worse characteristics compared to those of pure Portland cement (PC), especially in the early period of setting. As is well known, FA can be a good solution for the neutralization of the negative effects generated due to the creation of free Ca(OH)2 during the hydration of PC, provided that the problems with the low activity of FAare overcome. For the experiments in this study, a mixture of Portland cement and fly ash was used, the content of ash in the mixture being 30 % and 50 %. Mechanical activation was performed in a vibrating ring mill. The goal of this study was to demonstrate, through experimental results, that during the mechanical activation of a PC and FA mixture, the components in the mixture which mostly affect the direction, rate and range of hydration reactions occurring in the mixture had been activated. The values of the compressive strength of the activated and non-activated mixtures and the changes of their specific surface area proved that during the grinding process, the mixture PC+FA had been mechanically activated. The highest increase of compressive strength was achieved in the early period of setting, which indicates an improvement in the early hydration of the mixture. XRD, DTA and TG analyses showed that the alite (C3S) and belite (C2S) from the PC and a part of the fly ash were activated. .


2013 ◽  
Vol 18 (6) ◽  
pp. 1597-1604 ◽  
Author(s):  
Djordje Antonijevic ◽  
Ivana Medigovic ◽  
Milorad Zrilic ◽  
Bojan Jokic ◽  
Zorica Vukovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document