Adsorption Characters of Mn2+ onto Palygorskites Modified by 1, 10-Phenanthroline and Triethylamine

2010 ◽  
Vol 178 ◽  
pp. 8-16
Author(s):  
Liang Dong Feng ◽  
Bo Qing Chen ◽  
Ying Ying Shi ◽  
Ying Wei Guo ◽  
Jing Huang ◽  
...  

1, 10-phenanthroline and triethylamine modified palygorskites were prepared by microwave irradiation, and characterized with FT-IR technique. The effects of contact time, adsorbent dosage, and pH value of the initial solution on the adsorption characters of Mn2+ were investigated. The adsorption of Mn2+ from aqueous solutions using 1, 10-phenanthroline or triethylamine modified palygorskites were investigated. Experiment results indicated that 1,10-phenanthroline and triethylamine molecules have been successfully grafted to palygorskite. The adsorption was rapid during the first 5 minuts and equilibrium were attained within 60 minutes in the initial concentration of Mn2+ of 50 and 100 mg•L-1, and fast adsorption in the first 10 minutes and slowly increased with the contact time due to the adsorption of palygorskite. The 1, 10-phenanthroline modified palygorskites had higher adsorption capacity than triethylamine modified palygorskites. Compared with natural palggorskites, the Mn2+ ions adsorption capacities of palggorskite modified by 1, 10-phenanthroline or triethylamine were significantly improved. There were less difference in the adsorption capacity between different dasages of 1, 10-phenanthroline modified palygorskites, but the adsorption capacity of Mn2+ adsorbed onto triethylamine modified palygorskites decreased with increasing the dosages. A Lagergren pseudo-second order model best described the kinetics of adsorption of Mn2+ onto the modified palygorskites.

2011 ◽  
Vol 391-392 ◽  
pp. 1324-1329
Author(s):  
Ying Ying Shi ◽  
Qiang Hua Zhang ◽  
Liang Dong Feng ◽  
Qing Ping Xiong ◽  
Fei Liu

By using Palygorskite as matrix and introducing the surface ion-imprinting concept to the synthesis process, a Palygorskite-supported organic–inorganic hybrid polymer for selective separation of Pb2+ from aqueous solutio was prepared. The prepared polymer was characterized with techniques of SEM, XRD and FT-IR. The effects of contact time, pH value and temperature of the initial solution on the adsorption characters of Pb2+ were investigated. Under the optimum conditions, the ions-imprinted polymer offered a fast kinetics for the adsorption of Pb2+ and the maximum capacity was 4.51 mg/g. And the pseudo-second order model bestly described the kinetics of adsorption of Pb2+ onto the as-prepared materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hamid Ziyat ◽  
Mohammed Naciri Bennani ◽  
Hassan Hajjaj ◽  
Omar Qabaqous ◽  
Said Arhzaf ◽  
...  

The present work aims to study the affinity of a component of the thyme essential oil “thymol” to natural Moroccan clay “Rhassoul” using the adsorption technique. The physicochemical characterizations of the purified and modified clay were carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), DTA/TGA, and SEM-EDX. Thymol adsorption tests on the purified Rhassoul (Rh-P) and the modified one by CTAB (Rh-CTAB) were followed by UV-visible spectroscopy. They show that the adsorption isotherms can be described by the Freundlich model and that the kinetics of adsorption is in accordance with the pseudo-second-order model for the two clays. Adsorption capacities obtained were of the order of 6 mg/g for the purified Rhassoul and 16 mg/g for the modified Rhassoul by cetyltrimethylammonium bromide (CTAB). These values show that the modified Rhassoul has a better adsorption capacity compared to the purified Rhassoul.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 643 ◽  
Author(s):  
Lidia Bandura ◽  
Małgorzata Franus ◽  
Jarosław Madej ◽  
Dorota Kołodyńska ◽  
Zbigniew Hubicki

Nowadays, the contamination of water with phenol is a serious environmental problem. This compound occurs very often with heavy metal ions which makes purification of water even more difficult. This article presents the problem of the removal of phenol from aqueous solutions in the presence of Cu(II) ions on synthetic zeolite NaP1 and zeolite NaP1 modified with chitosan. The adsorbents were determined with the use of Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption/desorption isotherm, and scanning electron microscopy (SEM). The studies on isotherms and batch kinetics under diversified experimental conditions with respect to initial concentration, contact time, and pH were discussed. Both Cu(II) and phenol adsorption increases with the initial concentration. Different isotherm models correspond well with the data acquired through experiments. The kinetics of adsorption follows the pseudo-second order rate equation. The studies indicate that the obtained sorbents can be employed for efficient removal of phenol from wastewater in the presence of Cu(II) ions.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3123-3126
Author(s):  
Gang Chao Zhu ◽  
Jian Xin Shou ◽  
Jia Wei Qian ◽  
Hua Zheng Xin ◽  
Mu Qing Qiu

In this study, sawdust modified by cetyltimethyl ammonium bromide was applied to adsorb conge red in aqueous solutions. The characteristics of modified sawdust were characterized by Fourier transform infrared spectrum and scanning electron microscopy. The effect of factors, such as pH, contact time, temperature, dosage, and salt concentration, were investigated. The results revealed that the addition of modified sawdust can significantly increase the adsorption capacity of dye. The maximum adsorption capacity of dye on modified sawdust was 109 mg·g-1 at 328K. The adsorption processes were rapid within the first 30 min and reached equilibrium in about 150 min. The adsorption kinetics fitted well with pseudo-second-order model. The pH value of the solution had significant impact on the amount of adsorption. Adsorption isotherm fitted better with the Langmuir model and the adsorption was an endothermic process


2014 ◽  
Vol 937 ◽  
pp. 9-16
Author(s):  
Xiao Mei Zhang ◽  
Hong Zhan Li ◽  
Man Li Cao ◽  
Chao Yue Chen

A crosslinked β-cyclodextrin (β-CD) polymer (PCD) was synthesized by using maleamic acid as a crosslinked agent, and its adsorption behavior for basic fuchsin in aqueous solution was investigated. The adsorption isotherms could be well fitted by the Langmuir adsorption equation. On the basis of the Langmuir analysis, the maximum adsorption capacities were determined to be 33.56 mg·g-1 at 308K. The kinetics of adsorption followed the pseudo-second-order model.


2021 ◽  
Vol 12 (2) ◽  
pp. 156-162
Author(s):  
A.S. Muhammad ◽  
M.A. Abdurrahman

A batch adsorption process was carried out by optimizing, the effect of contact time (10min to 180min) and initial concentration (5mg/l to150mg/l). The adsorbent was characterized using FTIR spectra and SEM, and the result obtained showed shifting and disappearance of peaks after adsorption. The results of the adsorption kinetics, which includes the correlation coefficient 0.9771 and the agreement between the amount adsorbed experimentally (1.472mg/g) and the calculated amount absorbed(1.196mg/g) revealed that MB was adsorbed satisfactory according to the pseudo second-order kinetic model.


2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


2013 ◽  
Vol 684 ◽  
pp. 194-197
Author(s):  
Yi Ke Li ◽  
Bing Lu Zhao ◽  
Wei Xiao ◽  
Run Ping Han ◽  
Yan Qiang Li

The effect of contact time and the determination of the kinetic parameters of adsorption of methyl orange (MO) from aqueous solution onto Iron-Oxide-Coated-Zeolite (IOCZ) powder are important in understanding the adsorption mechanism. The effect of contact time on adsorption quantity was studied at different initial concentration and temperature, respectively. The pseudo-second-order model was adopted to fit the experimental data using non-linear regressive analysis and it was used to predict the adsorption behavior. The results showed that the process of adsorption MO was endothermic and chemisorption. The pore diffusion was not significant.


DYNA ◽  
2016 ◽  
Vol 83 (196) ◽  
pp. 223-228 ◽  
Author(s):  
Jhonnathan Machado-Infante ◽  
Gustavo Ramírez-Caballero ◽  
Martha Juliana Barajas Meneses

<p>In Colombia, a mineral rich in MnO<sub>2</sub> is extracted from the mines of Mallama, Nariño. In this work we studied the adsorption capacity of this mineral for Fe(II) dissolved in aqueous solution of open systems. The characterization was done through ICP-AES, XRF and Raman spectroscopy. The effect of different pretreatments on the mineral with oxidizing agents such as KMnO<sub>4</sub> and NaClO was evaluated. Studies of equilibrium and kinetics of adsorption showed that the mechanism fits well to the Langmuir isotherm and its kinetics to a model of pseudo-second order. At the conditions studied was found that the adsorption capacity for the mineral modified with KMnO<sub>4</sub> and NaOCl were 59.209 and 51.279 mg/g respectively. It is concluded that the mineral is a potential alternative in water treatment.</p>


2012 ◽  
Vol 66 (8) ◽  
pp. 1699-1707 ◽  
Author(s):  
A. K. Giri ◽  
R. K. Patel ◽  
P. C. Mishra

In this work, the biosorption of As(V) from aqueous solutions by living cells of Bacillus cereus has been reported. The batch biosorption experiments were conducted with respect to biosorbent dosage 0.5 to 15 g/L, pH 2 to 9, contact time 5 to 90 min, initial concentration 1 to 10 mg/L and temperature 10 to 40 °C. The maximum biosorption capacity of B. cereus for As(V) was found to be 30.04 at pH 7.0, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data were fitted to linearly transformed Langmuir isotherms with R2 (correlation coefficient) &gt;0.99. Bacillus cereus cell surface was characterized using AFM and FTIR. The metal ions were desorbed from B. cereus using both 1 M HCl and 1 M HNO3. The pseudo-second-order model was successfully applied to predict the rate constant of biosorption.


Sign in / Sign up

Export Citation Format

Share Document