Technical Characters and Influencing Factors for Precision of Rapid Prototyping

2011 ◽  
Vol 179-180 ◽  
pp. 869-874
Author(s):  
Dong Man Yu ◽  
Jia Ping Liu ◽  
Chang Pei Shang

Fabrication pioneer production with lower cost and shorter cycle is a major mission for an enterprise, and rapid prototyping is a digital manufacture technology based on discrete stacking, which can meet the requirement. Rapid prototyping technology can be used to machine complex physical part directly from CAD data without any cutter or technical equipments. The paper summaries the working principle and compares the application fields, machining cost and process parameters for four typical rapid prototyping technology. Finally, the significant performance of rapid prototyping for modern industry is discussed, and the merits and faults is analysed. The investigation is beneficial for choosing an optimal forming process in industry.

2011 ◽  
Vol 480-481 ◽  
pp. 1554-1558
Author(s):  
Ji Bao Liu ◽  
Di Wang ◽  
Xiao Jing Li ◽  
Zhi Hua Gao

Rapid prototyping (RP) is a digital manufacture technology based on discrete stacking technology. RP technology can be used to machine complex physical part directly from CAD data without any professional apparatus. The paper also summarized four main RP technologies, discussed the working principle and compared the application fields, machining cost and process parameters in detailed. Finally, the author prospected the significant performance of RP for modern industry, analyzed the merits and faults and indicates the development object for RP technology.


2012 ◽  
Vol 549 ◽  
pp. 1046-1050 ◽  
Author(s):  
Hao Wang ◽  
Hong Ge Zhang

Rapid prototyping has quickly grown in use and importance in industrial applications during the past decade. Rapid prototyping, though a relatively new discipline, has proven to be a valuable tool in the reduction of the time and cost associated with developing new products. This paper summaries the working principle and compares the application fields, machining cost and process parameters for four typical RP technology. The author discusses the significant performance for modern industry, analyses the merits and faults and indicates the development object for RP technology.


2012 ◽  
Vol 160 ◽  
pp. 165-169 ◽  
Author(s):  
Xue Ling Yang ◽  
Di Wang ◽  
Dong Man Yu

Rapid prototyping (RP) is an advanced manufacturing technology and has obtained widely application in recent years. RP technology can be used to machine complex physical part directly from CAD data without any cutter or technical equipments. A variety of new rapid manufacturing technologies have emerged and developed include Stereo Lithography (SL), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), and Three Dimensional Printing (3-D Printing). The paper summaries the working principle and discusses the application fields for four typical rapid prototyping technologies. Finally, the significant performance of rapid prototyping for modern industry is discussed. The investigation is beneficial for choosing an optimal forming process in industry.


Author(s):  
Sherwan Mohammed Najm ◽  
Imre Paniti

AbstractIncremental Sheet Forming (ISF) has attracted attention due to its flexibility as far as its forming process and complexity in the deformation mode are concerned. Single Point Incremental Forming (SPIF) is one of the major types of ISF, which also constitutes the simplest type of ISF. If sufficient quality and accuracy without defects are desired, for the production of an ISF component, optimal parameters of the ISF process should be selected. In order to do that, an initial prediction of formability and geometric accuracy helps researchers select proper parameters when forming components using SPIF. In this process, selected parameters are tool materials and shapes. As evidenced by earlier studies, multiple forming tests with different process parameters have been conducted to experimentally explore such parameters when using SPIF. With regard to the range of these parameters, in the scope of this study, the influence of tool material, tool shape, tool-end corner radius, and tool surface roughness (Ra/Rz) were investigated experimentally on SPIF components: the studied factors include the formability and geometric accuracy of formed parts. In order to produce a well-established study, an appropriate modeling tool was needed. To this end, with the help of adopting the data collected from 108 components formed with the help of SPIF, Artificial Neural Network (ANN) was used to explore and determine proper materials and the geometry of forming tools: thus, ANN was applied to predict the formability and geometric accuracy as output. Process parameters were used as input data for the created ANN relying on actual values obtained from experimental components. In addition, an analytical equation was generated for each output based on the extracted weight and bias of the best network prediction. Compared to the experimental approach, analytical equations enable the researcher to estimate parameter values within a relatively short time and in a practicable way. Also, an estimate of Relative Importance (RI) of SPIF parameters (generated with the help of the partitioning weight method) concerning the expected output is also presented in the study. One of the key findings is that tool characteristics play an essential role in all predictions and fundamentally impact the final products.


2014 ◽  
Vol 556-562 ◽  
pp. 460-463 ◽  
Author(s):  
Xue Chen ◽  
Ming Zhe Li ◽  
Wen Hua Liu ◽  
Zhi Qiang Hou

To solve the problem of low material utilization in traditional stretch forming process, a flexible stretch forming method was proposed, which can be realized by interaction of the multi-point stretch forming die with discrete-gripper stretch forming machine. The principle and characteristics of sheet metal flexible stretch forming technology was introduced, structural composition and working principle of the multi-point stretch forming die and discrete-gripper stretch forming machine were expounded, and the technology experiments was carried out with a self-designed flexible stretch forming technology equipment for sheet metal. The experimental results indicate that structure of multi-point stretch forming die and discrete-gripper stretch forming machine are reasonable, and flexible stretch forming technology can be realized by above-mentioned die and machine, stretch forming parts has a good quality and its shape error can satisfy requirements of production.


2021 ◽  
Vol 58 (3) ◽  
pp. 198-209
Author(s):  
Vasile Cojocaru ◽  
Doina Frunzaverde ◽  
Dorian Nedelcu ◽  
Calin-Octavian Miclosina ◽  
Gabriela Marginean

Initially developed as a rapid prototyping tool for project visualization and validation, the recent development of additive manufacturing (AM) technologies has led to the transition from rapid prototyping to rapid manufacturing. As a consequence, increased attention has to be paid to the mechanical, chemical and physical properties of the printed materials. In mechanical engineering, the widespread use of AM technologies requires the optimization of process parameters and material properties in order to obtain components with high, repeatable and time-stable mechanical properties. One of the main problems in this regard is the anisotropic behavior of components made by additive manufacturing, determined by the type of material, the 3D printing technology, the process parameters and the position of the components in the printing space. In this paper the influence of the printing orientation angle on the tensile behavior of specimens made by material jetting is investigated. The aim was to determine if the positioning of components at different angles relative to the X-axis of the printer (and implicitly in relation to the multijet printing head) contributes to anisotropic behavior. The material used was a photopolymer with a mechanical strength between 40 MPa and 55 MPa, according to the producer. Four sets of tensile test specimens were manufactured, using flat build orientation and positioned on the printing table at angles of 0˚, 30˚, 60˚ and 90˚ to the X-axis of the printer. Comparative analysis of the mechanical behavior was carried out by tensile tests and microscopic investigations of the tensile test specimens fracture surfaces.


2018 ◽  
Author(s):  
Yi Shi ◽  
Jian Cao ◽  
Kornel F. Ehmann

Compared to the conventional single-point incremental forming (SPIF) processes, water jet incremental micro-forming (WJIMF) utilizes a high-speed and high-pressure water jet as a tool instead of a rigid round-tipped tool to fabricate thin shell micro objects. Thin foils were incrementally formed with micro-scale water jets on a specially designed testbed. In this paper, the effects on the water jet incremental micro-forming process with respect to several key process parameters, including water jet pressure, relative water jet diameter, sheet thickness, and feed rate, were experimentally studied using stainless steel foils. Experimental results indicate that feature geometry, especially depth, can be controlled by adjusting the processes parameters. The presented results and conclusions provide a foundation for future modeling work and the selection of process parameters to achieve high quality thin shell micro products.


2021 ◽  
Author(s):  
De Liu ◽  
Xiaoming Pan ◽  
Zhiyang Gu ◽  
Hui Qiu

Abstract Polishing determines the final surface quality of the aero engine, which have great influence on its working performance and working life. By analyzing the structure and working principle of the flexible self-adaptive polishing platform of the blisk, the abrasive cutting model of the flap disc is established. The theoretical calculation of the effect of elastic deformation during the polishing process on the contact length of flap disc and blisk. The model of polishing force, polishing heat and temperature field during the polishing process of the flap disc are established and analyzed. Single factor method is used to analyze the influence of process parameters on polishing force, polishing temperature, roughness and specific polishing energy. Finally, the polishing test shows that the optimized process parameters improve the polished surface quality and meet the requirements of the blade polishing process.


Sign in / Sign up

Export Citation Format

Share Document