Development and Application of Four Typical Rapid Prototyping Technologies

2012 ◽  
Vol 160 ◽  
pp. 165-169 ◽  
Author(s):  
Xue Ling Yang ◽  
Di Wang ◽  
Dong Man Yu

Rapid prototyping (RP) is an advanced manufacturing technology and has obtained widely application in recent years. RP technology can be used to machine complex physical part directly from CAD data without any cutter or technical equipments. A variety of new rapid manufacturing technologies have emerged and developed include Stereo Lithography (SL), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), and Three Dimensional Printing (3-D Printing). The paper summaries the working principle and discusses the application fields for four typical rapid prototyping technologies. Finally, the significant performance of rapid prototyping for modern industry is discussed. The investigation is beneficial for choosing an optimal forming process in industry.

2014 ◽  
Vol 697 ◽  
pp. 340-343
Author(s):  
Zhen Wen Zou ◽  
Xi Cong Ye

The principle and application of rapid prototyping technology were presented. Several typical rapid prototyping technology were introduced, such as the Stereo Lithography Appearance, Laminated object manufacturing, fused deposition modeling, selective laser sintering, three dimensional spray adhesive technology. The rapid prototyping technology was used in manufacturing, clinical surgical, defense technology, ceramics, dental, and so on. The choke point of rapid prototyping technology application was analyzed, such as molding materials, precision error, and the performance of data sharing software. The future development trend of rapid prototyping technology is prospected also.


2012 ◽  
Vol 713 ◽  
pp. 61-66 ◽  
Author(s):  
L. Novakova-Marcincinova ◽  
V. Fecova ◽  
J. Novak-Marcincin ◽  
M. Janak ◽  
J. Barna

Technology of Rapid Prototyping (RP) presents the technique that leads to quick manufacturing of real model using the scaling with support of three-dimensional software solution running in computer environment (CAD). First RP technique, Stereolithography, was developed by 3D Systems of Valencia, CA, USA. The company was founded in 1986, and since then, a number of different RP techniques have become available. Article deals with basic characteristics and problems in area of technology of Rapid Prototyping with focus to Fused Deposition Modeling. It brings in the project of experimental gearbox design and its manufacturing with application of Rapid Prototyping technology. The work was realized by students and employees of Faculty of Manufacturing Technologies in Presov, Slovakia. Model with four gears was realized together with its gear changing mechanism. Production of gearbox was connected with problems arising from size of individual parts and included also the realization of final gearbox assembly.


2021 ◽  
Vol 5 (1) ◽  
pp. 48-55
Author(s):  
Adriana Kovalcik

AbstractIn the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.


Author(s):  
Prajakta Subhedar

A class of technologies referring to Rapid Prototyping (RP) or Additive or Layer Manufacturing or 3D Printing allows designers to quickly create tangible prototype instead of using two dimensional pictures. This technology produces models and prototype parts from 3D CAD model data created from 3D object digitizing systems. Rapid Prototyping forms parts by joining together liquid, powder or sheet materials. Physical models are built using three basic stages: pre-processing, building, post-processing. Pre-processing consists of generation of CAD model, convert into STL format and slice the STL files into cross sectional layers. In building process, construction of model takes place one layer atop another. Post process consists of cleaning and finishing the final model. Common types of Rapid Prototyping technologies popular in industry are: Steriolithography, Fused Deposition Modeling, Selective Laser Sintering, Laminated Object Manufacturing,3 D Printing. The selection of the processes depends upon the material to be cured to build the final model. Rapid Prototyping technologies are used in various industries like Automobiles, Consumer products, Medical, Academics, Aerospace, Government and Military. This poster talks about few challenges to be considered in Rapid Prototyping like shrinkage and distortion of final model, mechanical performance of RP model and limitations to mass quantity. : Layer Manufacturing, CAD Model, STL format, Steriolithography, Fused Deposition Modeling, Selective Laser Sintering.


2019 ◽  
Vol 890 ◽  
pp. 113-145
Author(s):  
Imran Khan ◽  
Christina S. Kamma-Lorger ◽  
Saeed D. Mohan ◽  
Artur Mateus ◽  
Geoffrey R. Mitchell

Additive manufacturing (AM) is a well-known technology for making real three dimensional objects, based on metal, ceramic and plastic material used for various applications. The aim of this review is to explore and offer an insight in to the state of the art polymer based nanocomposites in to additive manufacturing applications. In context to this, the developing efforts and trends in nanocomposites development particularly for additive manufacturing processes were studied and summed up. The scope and limitations of nanocomposites into Stereolithography, selective laser sintering and fused deposition modeling was explored and highlighted. The review highlights widely accepted nanoparticles for range of applications including mechanical, electrical, flame retardance and crossing over into more biological with the use of polymer matrices. Acquisition of functional parts with limitations in regard to printing is highlighted. Overall, the review highlights successes, limitations and opportunities that the union of AM and polymer based nanocomposites can bring to science and technology.


2018 ◽  
Vol 12 (1) ◽  
pp. 241-255 ◽  
Author(s):  
M. Gundhavi Devi ◽  
M. Amutheesan ◽  
R. Govindhan ◽  
B. Karthikeyan

Background: Various living organisms especially endangered species are affected due to the damaged body parts or organs. For organ replacement, finding the customized organs within the time by satisfying biomedical needs is the risk factor in the medicinal field. Methods: The production of living parts based on the highly sensitive biomedical demands can be done by the integration of technical knowledge of Chemistry, Biology and Engineering. The integration of highly porous Biomedical CAD design and 3D bioprinting technique by maintaining the suitable environment for living cells can be especially done through well-known techniques: Stereolithography, Fused Deposition Modeling, Selective Laser Sintering and Inkjet printing are majorly discussed to get final products. Results: Among the various techniques, Biomedical CAD design and 3D printing techniques provide highly precise and interconnected 3D structure based on patient customized needs in a short period of time with less consumption of work. Conclusion: In this review, biomedical development on complex design and highly interconnected production of 3D biomaterials through suitable printing technique are clearly reported.


2014 ◽  
Vol 510 ◽  
pp. 163-167 ◽  
Author(s):  
Monica Carfagni ◽  
Luca Puggelli

In the last decades several computer-based procedures have been devised with the aim of speeding up the 3D reconstruction from a single image in the form of bas-relief. At the same time, the use of rapid prototyping (RP) technology considerably spread enabling quick manufacture of 3D products directly from 3D modelling systems. The present paper presents a few consideration about different possible strategies for bas-reliefs manufacturing by using the main RP techniques (stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM) and Polyjet/Multi-jet technology). A practical example is used for discussing pros and cons of the different alternatives.


2019 ◽  
Vol 25 (11) ◽  
pp. 1249-1264 ◽  
Author(s):  
Amoljit Singh Gill ◽  
Parneet Kaur Deol ◽  
Indu Pal Kaur

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


Sign in / Sign up

Export Citation Format

Share Document