Effect of FA/O Chelating Agent on Copper Ion Removing on Silicon Surface

2011 ◽  
Vol 183-185 ◽  
pp. 2284-2287
Author(s):  
Bai Mei Tan ◽  
Xin Huan Niu ◽  
Yan Gang He ◽  
Bao Hong Gao ◽  
Yu Ling Liu

Along with the feature size reducing and the increase of integration level rapidly in ULSI,the request for metal impurities contamination on silicon substrate surface appears specially rigorous. In this paper the chelating agent was added in cleaning solution in order to removing copper ion. FA/O, a new kind of chelating agent was studied in RCA cleaning solutions, which has 13 chelating rings and is free of sodium, stable and easily soluble. The XPS and GFAAS measured results indicate that FA/O is more efficient than NH4OH as a ligand. Cu contaminations on silicon wafer can be removed remarkably when adding a little FA/O to the cleaning solution or polishing slurry. When the chelating agent concentration of cleaning solution is 0.1% the removal rate of Cu atom reaches 83 percent. The FA/O chelating agent substituting NH4OH in SC-1 may simplify cleaning steps, and one cleaning step can remove Cu pollution on silicon wafer surface and meet the requirements of microelectronics technology.

Author(s):  
Dedy Ng ◽  
Milind Kulkarni ◽  
Hong Liang

One major concern in post-CMP cleaning is particles contamination on the substrate surface after the CMP process. These particles can be abrasive particles from the slurry, debris from pad material, and particles of film being polished. The cleaning method used in this study is direct contact of the substrate surface and brush sweeping. To enhance the cleaning process, an anionic surfactant is added in the cleaning solution. In order to understand effects of surfactant molecules on post-CMP cleaning, for the first time, we use a tribological approach over a range of surfactant concentration and temperature. In this regard, we observe how the surfactant behavior before and after it reaches the critical micelles concentration (cmc). Experimental results show that increase in surfactant concentration can promote bilayer interaction of micelles on the hydrophilic particles. Based on our study, we propose an interactive explanation of surface molecules with the wafer surface and nanoparticles through friction. This understanding will serve as a guide on how much surfactant should be added in order to achieve effective particle removal.


1997 ◽  
Vol 477 ◽  
Author(s):  
Hitoshi Morinaga ◽  
Masumi Aoki ◽  
Toshiaki Maeda ◽  
Masaya Fujisue

ABSTRACTNH4OH/H2O2/H2O (called APM or SC–1) cleaning combined with megasonic irradiation is found to feature outstanding removal efficiency for various types of particulate contaminant. The conventional APM cleaning, however, allows metallic impurity in solution to adhere onto substrate surface, and it must be followed by acid cleaning such as HCI/IH2O2/H2O (called HPM or SC–2) cleaning to remove metallic impurity from substrate. The advanced APM cleaning using MC–1 which is alkali cleaning agent containing chelating agent has been developed, and this new cleaning is found capable for preventing various metallic impurities including Al in solution from contaminating substrate surface. Besides, with cleaning conditions optimized, the advanced APM cleaning using MC–1 can also remove metallic impurity from substrate surface. In short, this modified APM cleaning is capable for removing particle and metallic impurity at the same time, which is not possible with the conventional cleaning technology. The cleaning process of semiconductor manufacturing process can be simplified if HPM cleaning is eliminated by introducing the advanced APM cleaning using MC–1. This leads to drastic reduction of cleaning cost and improvement of throughput of the cleaning process.


2009 ◽  
Vol 416 ◽  
pp. 529-534 ◽  
Author(s):  
Ren Ke Kang ◽  
Shang Gao ◽  
Zhu Ji Jin ◽  
Dong Ming Guo

With the development of IC manufacturing technology, the machining precision and surface quality of silicon wafer are proposed much higher, but now the planarization techniques of silicon wafer using free abrasive and bonded abrasive have the disadvantage of poor profile accuracy, environmental pollution, deep damage layer, etc. A soft abrasive wheel combining chemical and medical effect was developed in this paper, it could get super smooth, low damage wafer surface by utilizing mechanical friction of abrasives and chemical reaction among abrasives, additives, silicon. A comparison experiment between #3000 soft abrasive wheel and #3000 diamond abrasive wheel was given to study on the grinding performance of soft abrasive wheel. The results showed that: wafer surface roughness ground by soft abrasive wheel was sub-nanometer and its sub-surface damage was only 0.01µm amorphous layer, which were much better than silicon wafer ground by diamond abrasive wheel, but material removal rate and grinding ratio of soft abrasive wheel were lower than diamond wheel. The wafer surface ground by soft abrasive wheel included Ce4+, Ce3+, Si4+, Ca2+ and Si, which indicated that the chemical reaction really occurred during grinding process.


Doklady BGUIR ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 57-65
Author(s):  
O. I. Tsikhan ◽  
S. I. Madveika ◽  
S. V. Bordusau ◽  
A. L. Barakhoev ◽  
P. V. Kamlach

The study is devoted to the research of the dependence of the processing results of photoresistive films on the silicon wafers surface in an ozone environment on the conditions and parameters of the process. The high oxidizing potential of ozone justifies the possibility of its use for removing organic films under atmospheric pressure. The experiments were carried out using the developed research bench, in which the mode and method of heating, as well as the method of supplying gas to the surface of the photoresist, were varied. Silicon wafers with a formed 1,35-μm thick masking photoresist film were used as experimental samples. It was found expedient that uniform heating of the plate over its entire surface can be achieved using a ceramic IR heater. When the ozone-air mixture was introduced into the center of the heated sample, the presence of the removed photoresist residues was observed, which was associated with a temperature drop in its surface area. To solve this problem, the computer models of the temperature regimes of the reaction volume elements were calculated. They showed that the scattering of the working gas flow over the surface of the silicon wafer would significantly increase the efficiency of photoresist removal, and with a good selection of the treatment regime it would ensure complete removal of the photoresist. The data obtained were experimentally confirmed by using an ozone-air mixture flow separator. Experiments were carried out to study the effect of the distance from the wafer surface to the working gas inlet on the photoresist removal rate. They showed that a decrease in the distance reduces the ozone loss due to thermal decomposition and, consequently, increases the material removal rate.


2008 ◽  
Vol 53-54 ◽  
pp. 173-178
Author(s):  
Ju Long Yuan ◽  
Yi Yang ◽  
Zhi Wei Wang ◽  
Dong Qiang Yu ◽  
Miao Qian ◽  
...  

This work aims to obtain fine surface of silicon wafer during precision and ultra precision machining, and presents a new method called semibonded abrasive machining. A semibonded abrasive grinding plate is used in the semibonded abrasive machining. Abrasive particle of 1000# Green SiC and bond named SSB are adopted in the manufacture of the plate. Four plates with different concentration of bond which are 1.5%, 2.5%, 3.5%, 4.5% respectively are made. The paper studies the effect of concentration of bond, the control parameters which include the lapping time, the load, and the rotating velocity of the plate on the surface roughness. Experimental results indicate each plate with different concentration of bond can obtain fine surface roughness. When the load or the rotating velocity increases, there is little effect on the surface roughness, but the material removal rate increases correspondingly. The initial roughness of the silicon wafer surface lapping by the plate could be improved from Ra 0.2μm to Ra 0.02μm in 9 min.


2012 ◽  
Vol 581-582 ◽  
pp. 790-793
Author(s):  
Xi Hui Zhang ◽  
Gui Xiang Wang

Several chelating agents in silicon polishing slurries were studied about their effects on copper adhesion to the surface of silicon wafer. The copper contamination level on the Si wafer surface was measured with GFAAS. The results indicate that PAA and HEDP for acid slurries can reduce 80% copper contamination with respect to the situation of without chelating agent. EDTA, the most common chelating agent for alkaline slurries, has no predominant compared with FA/O and AEEA. The copper contamination on Si wafer surface can reduce nearly 50% by adding EDTA while the addition of FA/O or AEEA in the same concentration for alkaline slurries can reach more than 70% reduction of copper contamination level.


2007 ◽  
Vol 359-360 ◽  
pp. 309-313 ◽  
Author(s):  
Zhao Zhong Zhou ◽  
Ju Long Yuan ◽  
Bing Hai Lv ◽  
Jia Jin Zheng

Polishing pad plays a key role in determining polish rate and planarity of a chemical mechanical planarization (CMP). The properties of the pad would deteriorate during polishing because of pad surface grazing, which results in reduced removal rates and poorer planarity of wafer surface. Pad conditioning and its influence on pad surface structure and CMP process is introduced and discussed in this paper. The study shows that the surface structure can be regenerated by breaking up the glazed areas with conditioner, MRR(Material Removal Rate) can be maintained at high level with proper pad conditioning, and UN(Non-uniformity)can also improved. Orthogonal experiments design is employed in this study to determine the best conditioning parameters.


2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2009 ◽  
Vol 69-70 ◽  
pp. 253-257
Author(s):  
Ping Zhao ◽  
Jia Jie Chen ◽  
Fan Yang ◽  
K.F. Tang ◽  
Ju Long Yuan ◽  
...  

Semi-fixed abrasive is a novel abrasive. It has a ‘trap’ effect on the hard large grains that can prevent defect effectively on the surface of the workpiece which is caused by large grains. In this paper, some relevant experiments towards silicon wafers are carried out under the different processing parameters on the semi-fixed abrasive plates, and 180# SiC is used as large grains. The processed workpieces’ surface roughness Rv are measured. The experimental results show that the surface quality of wafer will be worse because of higher load and faster rotating velocity. And it can make a conclusion that the higher proportion of bond of the plate, the weaker of the ‘trap’ effect it has. Furthermore the wet environment is better than dry for the wafer surface in machining. The practice shows that the ‘trap’ effect is failure when the workpiece is machined by abrasive plate which is 4.5wt% proportion of bond in dry lapping.


Author(s):  
Mayank Srivastava ◽  
Pulak M Pandey

The present experimental investigation attempts to understand and address the effect of ultrasonic vibrations on material removal in the polishing of silicon wafers (1 0 0). The requisite finishing experimentations were performed on an indigenously developed experimental arrangement of double-disc chemical assisted magnetorheological finishing (DDCAMRF) process with longitudinal vibrations. The MR fluid used in the experiments consists of a water-based suspension prepared by mixing suitable amounts of carbonyl iron particles (CIPs), abrasive particles, and additives or stabilizers. The prepared MR fluid uses both mechanics and chemistry to finish the silicon surface. Mechanics is mainly responsible for micro-scratching of silicon surface, which gets “softened” by hydration utilizing DI water in the MR fluid. In this study, the ‘response surface methodology (RSM)’ was chosen for designing the experiments to evaluate the significance of different process factors, namely polishing speed, abrasive concentration, and ultrasonic power on the material removal rate (MRR) in DDCAMRF process. The material removed from the wafer surface was measured using the precision digital weighing balance. It was observed that the MRR was found to increase with the increase in various process factors used. Further, analysis of variance (i.e., ANOVA) technique with a 95% confidence interval was performed to analyze the significant contribution of different process factors on MRR. The validation of developed model was done by performing experiments on random and optimized set of process factors. From, the statistical investigation it was discovered that ultrasonic power has highest contribution of 57.9% on MRR, followed by the polishing speed (13.3%), and abrasive concentration (12.5%). Furthermore, a genetic algorithm optimization tool was utilized to obtain optimum set of process parameters to maximize MRR.


Sign in / Sign up

Export Citation Format

Share Document