Electrochemical Degradation of Phenol Using the Oxygen Diffusion Cathode in an Undivided Cell

2011 ◽  
Vol 183-185 ◽  
pp. 575-579
Author(s):  
Hui Wang ◽  
Zhao Yong Bian ◽  
Guang Lu ◽  
Xiang Jia Wei ◽  
Xiu Juan Yu ◽  
...  

Electrochemical degradation of phenol was studied in an undivided cell with a Ti/IrO2/RuO2 anode and a carbon/polytetrafluoroethylene (C/PTFE) O2-fed cathode which produced hydrogen peroxide (H2O2) by the electro-reduction of dissolved oxygen. The effect of current density, supporting electrolyte concentration and initial pH on the removal efficiency of phenol were investigated systematically. Results indicated that the optimal removal efficiency of phenol was achieved under the conditions of current density of 39 mA/cm2 and supporting electrolyte concentration of 0.02 mol/L. The phenol removal efficiency in the neutral condition was higher than that of acidic and basic conditions. The chemical oxygen demand (COD) and total organic carbon (TOC) removal achieved 71.6% and 63.6% for 100 min’s electrolysis, respectively. Benzoquinone, maleic acid, oxalic acid, acetic acid and formic acid were identified as intermediates by HPLC. A general phenol degradation pathway involving all these intermediates was proposed.

2021 ◽  
Vol 11 (18) ◽  
pp. 8401
Author(s):  
Rachid El Brychy ◽  
Mohamed Moutie Rguiti ◽  
Nadia Rhazzane ◽  
Moulay Driss Mellaoui ◽  
Khalid Abbiche ◽  
...  

Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.


2012 ◽  
Vol 4 (2) ◽  
pp. 304-309 ◽  
Author(s):  
A. K. Chopra ◽  
Arun Kumar Sharma

The present investigation observed the effect of operating time, current density, pH and supporting electrolyte on the removal efficiency of Turbidity (TD) and Biochemical oxygen demand (BOD) of secondarily treated sewage (STS) using electrochemical process. A glass chamber of 2 litre volume was used for the experiment with two electrode plates of aluminum, each having an area of 125 cm2 and 2 cm distance apart from each other. The treatment showed that the removal efficiency of TD and BOD increased to 87.41 and 81.38 % respectively with theincrease of current density (1.82 -7.52 mA/cm2), time (5 - 40 mins.) and different pH (4-8) of the STS. The most effective removal efficiency was observed around the pH 7. Further, 0.5 g/l NaCl as a supporting electrolyte for electrochemical treatment of STS was found to be more efficient for an increase to 95.56 % and 86.99 % for the removal of TD and BOD at 7.52 mA/cm2 current density in 40 mins. respectively. The electrode and energy consumption was found to vary from 2.52 x10-2 to 10.51 x10-2 kg Al/m3 and 2.76 kwh/m3 to 45.12 kWh/m3 depending on the operating conditions.The kinetic study results revealed that reaction rate (k) increased from 0.0174 to 0.03 min-1 for TD and 0.0169 to 0.024 min-1 for BOD with increase in current density from 1.82 to 7.52 mA/cm2.


2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


2014 ◽  
Vol 50 (2) ◽  
pp. 198-209 ◽  
Author(s):  
Malika Aoudjehane ◽  
Mohamed Elghazali Benatallah

A procedure of electrocoagulation (EC) using iron electrodes has been used for the treatment of the wastewaters produced by the Beni-Tamou dairy in Algeria. The effect of the operating conditions, such as the current intensity, the electrolysis time, the pH of the solution and the electrical conductivity, on the removal efficiency of chemical oxygen demand (COD) and the total suspended solids (TSS) has been studied. An inter-electrode distance of 1 cm has been maintained constant during the tests. It has been found that an increase in electrolysis time and current density improved the treatment significantly, albeit with a greater consumption of energy as well as an increased electrode consumption. The results of the electrocoagulation treatment under various operating conditions show that the optimal efficiency has been obtained under the following conditions: 60 minutes of electrolysis, a current density of 200 A/m2, a pH 8, an electrical conductivity of 4.72 mS/cm and a consumption energy of 13.57 kWh/m3. Under these conditions, the removal efficiency for the COD and TSS parameters is 93.26 and 99.3%, respectively. The optimal treatment conditions of dairy wastewaters have resulted in final COD and TSS concentrations of 41.5 and 27 mg/L, respectively, values that are conform to industrial liquid effluents discharge norms.


2018 ◽  
Vol 78 (6) ◽  
pp. 1260-1267 ◽  
Author(s):  
Mohammad Malakootian ◽  
Mohammad Reza Heidari

Abstract Phenol and its derivatives are available in various industries such as refineries, coking plants, steel mills, drugs, pesticides, paints, plastics, explosives and herbicides industries. This substance is carcinogenic and highly toxic to humans. The purpose of the study was to investigate the removal of phenol from wastewater of the steel industry using the electrocoagulation–photo-Fenton (EC-PF) process. Phenol and chemical oxygen demand (COD) removal efficiency were investigated using the parameters pH, Fe2+/H2O2, reaction time and current density. The highest removal efficiency rates of phenol and COD were 100 and 98%, respectively, for real wastewater under optimal conditions of pH = 4, current density = 1.5 mA/cm2, Fe2+/H2O2 = 1.5 and reaction time of 25 min. Combination of the two effective methods for the removal of phenol and COD, photocatalytic electrocoagulation photo-Fenton process is a suitable alternative for the removal of organic pollutants in industry wastewater because of the low consumption of chemicals, absence of sludge and other side products, and its high efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kai-Yu Huang ◽  
Chih-Ta Wang ◽  
Wei-Lung Chou ◽  
Chi-Min Shu

This study investigates the removal efficiency of PVA from aqueous solutions using UV irradiation in combination with the production of electrogenerated hydrogen peroxide (H2O2) at a polyacrylonitrile-based activated carbon fiber (ACF) cathode. Three cathode materials (i.e., platinum, graphite, and ACF) were fed with oxygen and used for the electrogeneration of H2O2. The amount of electrogenerated H2O2produced using the ACF cathode was five times greater than that generated using the graphite cathode and nearly 24 times greater than that from platinum cathode. Several parameters were evaluated to characterize the H2O2electrogeneration, such as current density, oxygen flow rate, solution pH, and the supporting electrolyte used. The optimum current density, oxygen flow rate, solution pH, and supporting electrolyte composition were found to be 10 mA cm−2, 500 cm3 min−1, pH 3, and Na2SO4, respectively. The PVA removal efficiencies were achieved under these conditions 3%, 16%, and 86% using UV, H2O2electrogeneration, and UV/H2O2electrogeneration, respectively. A UV light intensity of 0.6 mW cm−2was found to produce optimal PVA removal efficiency in the present study. A simple kinetic model was proposed which confirmed pseudo-first-order reaction. Reaction rate constant (kap) was found to depend on the UV light intensity.


2013 ◽  
Vol 3 (3) ◽  
pp. 204-216 ◽  
Author(s):  
Jing Wang ◽  
Hongzhu Ma ◽  
Jie Yu ◽  
Shanshan Wang ◽  
Wenyan He ◽  
...  

Cetyltrimethylammonium bromide (CTAB) modified bentonite supported KMnO4 (KMnO4/CTAB-bent) was prepared by solid-phase grinding method, and applied to phenol removal from wastewater. Factors affecting efficiency, such as activated temperature, initial solution pH, KMnO4/CTAB-bent dosage, phenol initial concentration and reaction temperature on degradation were investigated. It was found that pH significantly affected the degradation and chemical oxygen demand (COD) removal efficiency. The results show that over 92% degradation and 60.58% COD removal efficiency can be obtained in 30 min. The surface properties and structure of KMnO4/CTAB-bent were measured by X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy. However, it was demonstrated that the KMnO4/CTAB-bent was deactivated quickly during phenol degradation after the second cycle, indicating that the stability of KMnO4/CTAB-bent needs to be further improved.


Author(s):  
Ayyappan U ◽  
Indu M.S ◽  
Adithya G Murickan ◽  
Balagopal J ◽  
Arun S Kumar ◽  
...  

Coir industry, a prominent industry in Kerala, uses huge amount of water and chemical reagents for its functioning. The effluent from these industries has high BOD, COD, toxic chemicals, oils and grease etc. Of the various pollutants, synthetic dyes are the most concerning. Electrocoagulation has advantages over other systems, as it doesn’t produce any secondary pollutants. In this study, a continuous flow electrocoagulation reactor is designed and operational parameters like flow rate, voltage, pH, electrolyte concentration, dye concentration and electrode orientation are optimized. The influence of these parameters are assessed by measuring colour removal efficiency (CRE) and chemical oxygen demand (COD). The optimum flow, voltage, electrolyte concentration, pH and electrode orientation were 1000 mL/hr., 8V, 1000 mg/L, 7 and parallel respectively. The optimized parameters were used for performance evaluation of the system in treating coir industry wastewater. Under these optimized conditions, colour removal efficiency, turbidity, pH, COD removal efficiency and BOD removal efficiency for the treated coir industry wastewater was found as 92.17%, 25 NTU, 8.7, 95.49%, and 92.20% respectively.


2018 ◽  
Vol 78 (12) ◽  
pp. 2542-2552 ◽  
Author(s):  
Seval Yılmaz ◽  
Emine Esra Gerek ◽  
Yusuf Yavuz ◽  
Ali Savaş Koparal

Abstract We present electrocoagulation (EC) treatment results of vinegar industry wastewater (VIW) using parallel plate aluminum and iron electrodes, and analyze the toxicity of the treatment processes. Due to the chemical complexity of vinegar production wastewater, several parameters are expected to alter the treatment efficiency. Particularly, current density, initial pH, Na2SO4 as support electrolyte, polyaluminum chloride (PAC) and kerafloc are investigated for their effects on chemical oxygen demand (COD) removal. Following several treatment experiments with real wastewater samples, aluminum-plate electrodes were able to reach to a removal efficiency of 90.91% at pH 4, 10 mg/L PAC and an electrical current density of 20.00 mA/cm2, whereas iron-plate electrodes reached to a removal efficiency of 93.60% at pH 9, 22.50 mA/cm2 current density. Although EC processes reduce COD, the usefulness of the system may not be assessed without considering the resultant toxicity. For this purpose, microtox toxicity tests were carried out for the highest COD removal case. It was observed that the process reduces toxicity, as well as the COD. Consequently, it is concluded that EC with aluminum and iron electrodes is COD removal-wise and toxicity reduction-wise a plausible method for treatment of VIW, which has high organic pollutants.


2016 ◽  
Vol 75 (1) ◽  
pp. 220-227 ◽  
Author(s):  
Hongmei Bai ◽  
Ping He ◽  
Jingchao Chen ◽  
Kaili Liu ◽  
Hong Lei ◽  
...  

Thermal decomposition method was employed to prepare a Ti/SnO2-RuO2 electrode, on which electrocatalytic degradation of bromocresol green (BCG) was investigated in detail. Scanning electron microscopy, an X-ray diffraction analyzer and an X-ray fluorescence spectrometer were adopted to characterize the morphology, crystal structure and element analysis of the as-prepared Ti/SnO2-RuO2 electrode. It was indicated that the Ti/SnO2-RuO2 electrode had a ‘cracked-mud’ structure and exhibited a superior specific surface area. The removal efficiency of BCG on the Ti/SnO2-RuO2 electrode was determined in terms of chemical oxygen demand and ultraviolet-visible absorption spectrometry. The results of the batch experiment indicated that the removal efficiency of BCG was influenced by the following factors in descending order: initial pH0, reaction temperature, current density and electrolysis time. The removal efficiency of BCG reached up to 91% at the optimal experiment conditions (initial concentration of 100 mg L−1, initial pH0 7, reaction temperature of 30 °C, current density of 12 mA cm−2 and electrolysis time of 150 min). As a result, it was concluded that BCG wastewater was efficiently removed by electrochemical oxidation on the Ti/SnO2-RuO2 electrode.


Sign in / Sign up

Export Citation Format

Share Document