Experimental Study on the Dynamic Characteristics of High Speed Milling on Inclined Planes

2011 ◽  
Vol 188 ◽  
pp. 99-103
Author(s):  
Q.L. Zhang ◽  
Cheng Yong Wang ◽  
Ying Ning Hu ◽  
Yue Xian Song

High speed milling (HSM) on inclined plane is the basic process of die and mould. The dynamic characteristics of the process are experimentally studied by changing the factors as inclined plane, cutting parameter and feeding mode on the high speed milling machine tool. The angles of inclined plane, spindle speed, feed amount and cutting depth are evaluated by the parameters of cutting forces and vibration. The feeding of projection process limits the milling vibrations mainly from horizontal (X) and (Y) directions. The cutting force reaches the peak value when the angle of inclined plane is 45°. The radial cutting depth shows more effects than the axial cutting depth to cutting force and vibration. However, the axial cutting depth should keep a minimum value when using ball mill.

2013 ◽  
Vol 395-396 ◽  
pp. 1031-1034
Author(s):  
Can Zhao ◽  
Yu Bo Liu

This paper makes an experiment in high-speed milling of Inconel 718. Cutting tests were performed using round and ceramic tools, at feeds from 0.06 to 0.14 mm/tooth, Axial Depth of Cut from0.5 to 1.5mm,and cutting speeds ranging from 500 to 1037 m/min. The behaviour of the cutting forces during machining was then measure. The results show that cutting force increases first and then decreases with the increase of feed per tooth, the tool chipping and groove wear were found with the increase of axial cutting depth, and cutting force is increased; the increase in cutting force with the cutting speed increases, when the cutting speed reaches a critical speed, the cutting force as the cutting speed increases began to decline.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Cheng-Hsien Kuo ◽  
Zi-Yi Lin

Most aerospace parts are thin walled and made of aluminum or titanium alloy that is machined to the required shape and dimensions. Deformation is a common issue. Although the reduced cutting forces used in high-speed milling generate low residual stress, the problem of deformation cannot be completely resolved. In this work, we emphasized that choosing the correct cutting parameters and machining techniques could increase the cutting performance and surface quality and reduce the deformation of thin plates. In this study, a part made of a thin 6061 aluminum alloy plate was machined by high-speed milling (HSM), and a Taguchi L16 orthogonal array was used to optimize the following parameters: linear velocity, feed per tooth, cutting depth, cutting width, and toolpath. The impact of cutting parameters on the degree of deformation, surface roughness, as well as the cutting force on the thin plate were all investigated. The results showed that the experimental parameters for the optimal degree of deformation were A1 (linear velocity 450 mm/min), B1 (feed per tooth 0.06 mm/tooth), C1 (cutting depth 0.3 mm), D4 (cutting width 70%), and E4 (rough zigzag). Feed per tooth was the most significant control factor, with a contribution as high as 63.5%. It should also be mentioned that, according to the factor response of deformation, there was a lower value of feed per tooth and less deformation. Furthermore, the feed per tooth and the cutting depth decreased and the surface roughness increased. The cutting force rose or fell with an increase or decrease of cutting depth.


2014 ◽  
Vol 800-801 ◽  
pp. 793-797
Author(s):  
Can Zhao ◽  
Zi Biao Wang ◽  
Xue Hui Wang ◽  
Wang Xi ◽  
Yang Yang Shi

Nickel-base superalloy GH4169 is a kind of alloy with high intensity, heat-stability and heat-fatigability, so that is often used to aerospace field, but which has poor machinability. The cutting force, plasticity deformation all present their particular characters which causes cutting vibration . The cutting vibration influence the surface roughness, the swing of the cutting force and tool wear. This article discusses the superalloy of GH4169 on the basis of cutting speed, cutting depth and feed per-tooth.


2011 ◽  
Vol 141 ◽  
pp. 344-349
Author(s):  
Hu Zeng Li ◽  
Yi Wang ◽  
Nai Xiong Zhu ◽  
Rao Bo Hu ◽  
Chong Zhang ◽  
...  

The measurement method and apparatus of cutting force by high speed milling is introduced. The high speed milling force of wrought aluminum alloy is measured and analyzed through separately examining the influences of various factors, such as cutting speed, cutting depth, milling width, feed per cutting tooth, down or up milling, cooling and lubricating. The results match with outcomes from other’s tests and the theory of metal cutting, and are close to the calculated force values, so that the test can be regarded as positive. It is pointed out that high cutting speed, little cutting depth, properly great working engagement and feed per tooth, high feed rate, down milling and efficient cooling and lubricating should be used to reduce cutting force and deformation, to improve milling accuracy and efficiency, which can be helpful to the spread applications of High Speed Machining.


2013 ◽  
Vol 873 ◽  
pp. 350-360
Author(s):  
Song Peng ◽  
Li Jing Xie ◽  
Xi Bin Wang ◽  
Na Xin Fu ◽  
Xing Kuan Shi

High-speed milling tests for 65vol.%SiCp/6063Al composites were performed by polycrystalline diamond (PCD) tools, response surface methodology was utilized in this study, and a cutting force model was developed through response surface methodology, which contained some important parameters such as cutting speed, cutting feed rate, cutting depth and cutting width. The analysis of variance (ANOVA) indicated that the proposed mathematical model can adequately describe the relationship between cutting force and cutting process parameters. The results show that cutting depth is the biggest important factor of milling force, and cutting feed rate is the second important factor, cutting speed is the third; milling force would not increase with the increasing of cutting width.


2013 ◽  
Vol 395-396 ◽  
pp. 1026-1030 ◽  
Author(s):  
Zhao Lin Zhong ◽  
Xing Ai ◽  
Zhan Qiang Liu

This paper presents the experimental results of cutting force and surface roughness of 7050-T7451 aluminum alloy under the cutting speed of 3000~5000m/min. The cutting forces and surface roughness with different cutting parameters were analyzed. Experimental results suggested that increasing cutting speed would engender thermal softening, which would in return affect the cutting force and surface roughness in high speed milling. The cutting force and surface roughness were affected by cutting depth and feed rate obviously. Surface roughness was also affected by cutting width which changed the cutting force slightly. According to the results, proper parameters could be selected and thermodynamic relationship needed to be discussed for further research.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


Sign in / Sign up

Export Citation Format

Share Document