Surfactants-Controlled Morphosynthesis of Strontium Carbonate

2011 ◽  
Vol 194-196 ◽  
pp. 683-688
Author(s):  
Chao You ◽  
Qiang Zhang ◽  
Yun Zhao ◽  
Qing Ze Jiao

The controlled synthesis of SrCO3microstructures with different morphologies, such as flower-like, cauliflower-like and finger-like, were successfully achieved in the presence of mixed nonionic/anionic surfactants polyoxyethylene (20) sorbitan monolaurate (Tween20) and sodium dodecyl sulfate (SDS). Results indicated that SDS/Tween20 complex micelles played important roles in the morphological control of SrCO3microstructures. Also, the influence of CO32-concentration on the morphology of SrCO3crystals was investigated and discussed. X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and field-emission scanning electron microscope (FE-SEM) were used to characterize the as-synthesized crystals.

BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Hossein Shahbazi-Alavi ◽  
Sheida Khojasteh-Khosro ◽  
Javad Safaei-Ghomi ◽  
Maryam Tavazo

Abstract Crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) attached to nano-Fe3O4 as a superior catalyst has been used for the synthesis of 3-alkyl-4-phenyl-1,3-thiazole-2(3H)-thione derivatives through a three-component reactions of phenacyl bromide or 4-methoxyphenacyl bromide, carbon disulfide and primary amine under reflux condition in ethanol. A proper, atom-economical, straightforward one-pot multicomponent synthetic route for the synthesis of 1,3-thiazoles in good yields has been devised using crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) tethered to nano-Fe3O4. The catalyst has been characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM).


Author(s):  
R. K. Shukla ◽  
Susheel Kumar Singh ◽  
Akhilesh Tripathi

Polyaniline (PANI) is synthesized by chemical oxidative polymerization method. The, characterization were made using XRD (X-ray diffraction), FT-IR (Fourier transform spectroscopy), UV -vis (ultra-violet visible spectrophotometer) technique which confirms the synthesis of the Polyaniline. The surface morphology of Polyaniline was studied with scanning electron microscope (SEM).


2013 ◽  
Vol 774-776 ◽  
pp. 629-633
Author(s):  
Ji Feng Jiang ◽  
Kang Kang Guo ◽  
Ya Ping Zhu ◽  
Fan Wang ◽  
Hui Min Qi

Triethynylborazine-polyhydromethylsiloxane copolymers (TEB-PHMSs) were prepared through hydrosilylation reaction between -C≡CH attached to boron and ≡Si-H. The structures of TEB-PHMSs were characterized by Fourier transform Infrared (FT-IR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Their cure behavior were examined by Differential Scanning Calorimeter (DSC) and FT-IR, and then thermostability and ceramization of cured TEB-PHMS were investigated by Thermogravimetric analysis (TGA), pyrolysis-GC-MS, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The results indicated that TEB-PHMSs could be cured and converted into an outstanding thermostable SiBCN ceramics.


2021 ◽  
Vol 19 (1) ◽  
pp. 27-32
Author(s):  
Ida Nur Apriani Apriani ◽  
Jarnuzi Gunlazuardi

Telah dilakukan sintesis fotokatalis N/TiO2 bermofologi nanotube dengan metode anodisasi  menggunakan ammonium nitrat (NH4NO3) sebagai sumber dopan pada berbagai variasi konsentrasi (0,5M , 1M, 2M), dilanjutkan dengan kalisinasi pada suhu 4500C selama 2 jam untuk mendapatkan fasa kristal anatase. Karakterisasi dilakukan menggunakan Scanning Electron Miscroscopy (SEM), Fourier Transform Infra Red (FT-IR), X-ray Diffraction (XRD), dan DRS (Diffused Reflectant Spectrometry) UV-Vis. Pengujian Linear Sweep Voltametri dan Multi Pulse Anperiometri pada fotokatalis­ N/TiO2 telah berhasil diterapkan untuk degradasi senyawa Rhodamin B menggunakan sinar UV maupun sinar tampak. Aplikasi dari uji fotoelektrokatalisis menggunakan sinar tampak untuk N/TiO2-NT memberikan hasil eliminasi sebesar 47,86%, sedangkan bila menggunakan TiO2 nanotube tanpa dopan eleminasi hanya sebesar 25,49%. Hal ini menunjukkan bahwa proses doping yang dilakukan telah berhasil menyisipkan nitrogen kedalam matrik TiO2 nanotube dan memperbaiki kinerja fotokatalisis nya di daerah sinar tampak.


2020 ◽  
Vol 10 (01) ◽  
pp. 119-126
Author(s):  
Noor M. Mohammed ◽  
Farah AH. Kadhim ◽  
Aseel A. Hammood ◽  
Ashour H. Dawood

The double-layered hydroxide nano-particles compounds with ciprofloxacin drug were carried out by preparation of the double layered hydroxide (DLH) of M+3/M+2 ions for selective ions. The ciprofloxacin drug was inserted between them. The resulted compounds were characterized by X-Ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier Transform Infrared (FT-IR) spectroscopy; the antibacterial studied done by using the gram (+) and gram (-) pigments.


2014 ◽  
Vol 17 (3) ◽  
pp. 80-85
Author(s):  
Nur Dwi Lestari ◽  
Pardoyo Pardoyo ◽  
Agus Subagio

Telah dilakukan penelitian sintesis dan karakterisasi CNT (Carbon Nanotube) dengan doping logam kobalt. Penelitian ini bertujuan untuk menentukan karakter CNT sebelum dan setelah didoping dengan variasi konsentrasi logam 10%, 20%, 30%, 40% dan 50%. Metode yang digunakan pada penelitian ini adalah impregnasi basah yang meliputi perendaman pada larutan logam dan kalsinasi. Hasil impregnasi dianalisis menggunakan Fourier Transform-Infra Red (FT-IR), GSA (Gas Sorption Analysis), Scanning Electron Microscopy (SEM) dan Energy Dispersive X-Ray Spectroscopy (EDS). Analisis FT-IR menunjukkan adanya vibrasi ulur dari ikatan Co-C dan Co-O.  Hasil GSA menunjukkan bahwa CNT loading 30% mempunyai luas permukaan tertinggi yaitu 69,192 m2/g. Hasil SEM-EDS menunjukkan bahwa morfologi permukaan dinding CNT ditutupi aggregat-aggregat kobalt. Pada hasil EDS fraksi kobalt dihasilkan adalah 1,96 % yang nilainya tidak jauh berbeda dari fraksi Fe yaitu 1,49%. Hal ini menunjukkan bahwa CNT doping logam Co menggunakan metode impregnasi basah tidak efektif.


2020 ◽  
Vol 16 (5) ◽  
pp. 770-778
Author(s):  
Mustafa Aghazadeh ◽  
Mohammad Reza Ganjali ◽  
Mina Mohebi Morad ◽  
Davoud Gharailou

Background: Recently, superparamagnetic and electromagnetic nano-materials have been extensively studied and their potential applications have also been investigated in various fields. In this regard, currently, Fe3O4 NPs are valuable candidates as diagnostic agents such as magnetic resonance imaging, enzyme immobilization, biosensing and cell labeling, and therapeutic probes, including drug delivery, bacteria detection, magnetic separation, and hyperthermia agents. Objective: In this study, electrochemical synthesis of Cu2+ cations-doped superparamagnetic magnetite nanoparticles (Cu-SMNPs) and their in situ surface coating with saccharides (i.e., glucose, sucrose and starch) are reported. The prepared glucose/Cu-SMNPs, sucrose/Cu-SMNPs and starch/Cu-SMNPs samples are characterized by structural, magnetic and morphological analyses by XRD, FT-IR, FE-SEM, EDAX and VSM. The suitability of the prepared samples for biomedical use is also proved. Methods: A simple cathodic electrochemical set-up was used to fabricate the iron oxide samples. The bath electrolyte was one litre deionized water containing 1.5g iron chloride, 3g iron nitrate, 0.5g copper chloride and 0.5g saccharide (i.e., glucose or sucrose or starch). The cathode and anode electrodes were connected to a DC power supply (PROVA 8000) as the power source. The deposition experiments were conducted at 10 mA cm-2 for 30 min. For the preparation of glucose/Cu-SMNPs, sucrose/Cu-SMNPs and starch/Cu-SMNPs samples, three electrodeposition experiments were carried out in three similar baths with only a change in the dissolved saccharide type. The prepared SMNPs samples were characterized by structural, morphological and magnetic analyses including X-ray powder diffraction (XRD, a Phillips PW-1800 diffractometer Smart Lab), field-emission scanning electron microscopy (FE-SEM, Mira 3-XMU with accelerating voltage of 100 kV), transmission electron microscopy (TEM, model Zeiss EM900 with an accelerating voltage of 80 kV), fourier transform infrared (FT-IR, a Bruker Vector 22 Fourier transformed infrared spectrometer) and vibrating sample magnetometers (VSM, model Lakeshore 7410). Results: Three types of metal-cations doped superparamagnetic magnetite nanoparticles (SMNPs), glucosegrafted Cu2+-doped MNPs (glucose/Cu-SMNPs), sucrose-grafted Cu2+-doped SMNPs (sucrose/Cu-SMNPs) and starch-grafted Cu2+-doped SMNPs (starch/Cu-SMNPs), were prepared for the first time. Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy and energy dispersive X-ray techniques proved the presence of saccharide capped layer on the surface of deposited SMNPs and also copper cations doping on their crystal structures. Superparamagnetic behaviors, including low coercivity and remanence values, were observed for all the prepared samples. Conclusion: SMNPs capped with saccharides (i.e., glucose, sucrose and starch) were successfully synthesized via one-pot simple deposition procedures. These particles showed suitable superparamagnetic properties with negligible remanence values and proper saturation magnetization, thus proving that they all have required physicochemical and magnetic characteristics for biomedical purposes.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Sunil Babu Eadi ◽  
Sungjin Kim ◽  
Soon Wook Jeong

We report the controlled synthesis of dumbbell shaped ZnO micro/nanostructures using anionic surfactant sodium dodecyl sulphate (SDS) by simple one-step hydrothermal method. The morphology changes of ZnO were characterized by using scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy. It is found that the size of the dumbbell increased with increase in concentration of SDS. Systematic growth mechanism with increase of concentration of SDS polymer is studied. Our results will help in the growing face selective ZnO for many functional applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 48329-48335 ◽  
Author(s):  
Heng-Zhi Duan ◽  
Hong-Yan Zeng ◽  
Hua-Miao Xiao ◽  
Chao-Rong Chen ◽  
Gao-Fei Xiao ◽  
...  

SO42− intercalated Mg–Al hydrotalcite (S-LDH) was prepared under microwave irradiation and characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 608
Author(s):  
Thong Le Ba ◽  
Marcell Bohus ◽  
István Endre Lukács ◽  
Somchai Wongwises ◽  
Gyula Gróf ◽  
...  

A comparative research on stability, viscosity (µ), and thermal conductivity (k) of carbon nanosphere (CNS) and carbon nanopowder (CNP) nanofluids was performed. CNS was synthesized by the hydrothermal method, while CNP was provided by the manufacturer. Stable nanofluids at high concentrations 0.5, 1.0, and 1.5 vol% were prepared successfully. The properties of CNS and CNP nanoparticles were analyzed with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SBET), X-ray powder diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and energy dispersive X-ray analysis (EDX). The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol% concentration compared to the base fluid, while the CNS does not make the thermal conductivity of nanofluids (knf) significantly higher. The studied nanofluids were Newtonian. The relative µ of CNS and CNP nanofluids was 1.04 and 1.07 at 0.5 vol% concentration and 30 °C. These results can be explained by the different sizes and crystallinity of the used nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document