The Research on Kinematics and Optimized Design of a Novel Parallel Mechanism with Six Freedoms

2011 ◽  
Vol 199-200 ◽  
pp. 1314-1319
Author(s):  
Cai An Fu ◽  
Jian Hao ◽  
Wen Chen

This paper proposes a novel parallel mechanism named 3/3-RRRS, and gives a research of direct and inverse solutions to positions of this mechanism. The equations of direct and inverse solutions are proposed by using vector method , and the analytical solutions of the inverse solution are given .There are many factors which influence the workspace, The article analyzes the specific factors that influence the workspace by using the software ADAMS, the workspace will function as a target for agencies to optimize the parameters.

2013 ◽  
Vol 456 ◽  
pp. 146-150
Author(s):  
Zhi Jiang Xie ◽  
Jun Zhang ◽  
Xiao Bo Liu

This paper designed a kind of parallel mechanism with three degrees of freedom, the freedom and movement types of the robot are analyzed in detail, the parallel mechanisms Kinematics positive and inverse solutions are derived through using the vector method. And at last its workspace is analyzed and studied systematically.


2011 ◽  
Vol 213 ◽  
pp. 43-47 ◽  
Author(s):  
Dong Tao Xu ◽  
Zhi Li Sun ◽  
Jia Lian Shi

This paper presents a novel, precision, maneuverable, 3-DOF translational parallel mechanism. The mechanism’s important feature is that all of the kinematic joints are the revolute joints. The paper derives the mechanism’s kinematic forward solution and inverse solution by using of coordinate transformation elimination method and vector method, and establishes proper kinematic modeling. Kinematic simulation is carried out by ADAMS virtual prototyping software. The operating data is obtained, it verifies the correctness of solving the forward and inverse solution, and solve the question of choices for many results during the theoretical solution. This technique can provide a useful tool in the design of kinematic trajectory of the parallel mechanism’s end-effector and the kinematic analysis of other parallel mechanism.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Rolando Grave de Peralta ◽  
Olaf Hauk ◽  
Sara L. Gonzalez

A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem (NIP) is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution (ANA) attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori information about neural generators that supplements the information contained in the data.


2012 ◽  
Vol 65 (3) ◽  
pp. 549-559 ◽  
Author(s):  
Wei-Kuo Tseng ◽  
Michael A. Earle ◽  
Jiunn-Liang Guo

In this paper, equations are established to solve problems of Rhumb Line Sailing (RLS) on an oblate spheroid. Solutions are provided for both the inverse problem and the direct problem, thereby providing a complete solution to RLS. Development of these solutions was achieved in part by means of computer based symbolic algebra. The inverse solution described attains a high degree of accuracy for distance and azimuth. The direct solution has been obtained from a solution for latitude in terms of distance derived with the introduction of an inverse series expansion of meridian arc-length via the rectifying latitude. Also, a series to determine latitude at any longitude has been derived via the conformal latitude. This was achieved through application of Hermite's Interpolation Scheme or the Lagrange Inversion Theorem. Numerical examples show that the algorithms are very accurate and that the differences between original data and recovered data after applying the inverse or direct solution of RLS to recover the data calculated by the direct or inverse solution are very small. It reveals that the algorithms provided here are suitable for programming implementation and can be applied in the areas of maritime routing and cartographical computation in Graphical Information System (GIS) and Electronic Chart Display and Information System (ECDIS) environments.


2010 ◽  
Vol 450 ◽  
pp. 283-287 ◽  
Author(s):  
Rui Wang ◽  
Gang Ding ◽  
Shi Sheng Zhong

A 5-axis parallel-serial machine tool is proposed, which consists of a 3-DOF parallel mechanism and a 2-DOF serial mechanism, and the kinematics analysis is discussed in detail based on the vector method. The size of the velocity transformation matrix is decreased. The problem of parameter coupling is resolved by adopting identity matrix and four-element vector. The relationship between the velocity and acceleration of the movable platform and the input parameters of the parallel mechanism is established. These algorithms are verified correct through ADAMS (Automatic Dynamic Analysis of Mechanical System) and can be referenced by kinematics analysis, dynamics analysis of parallel or parallel-serial machine tools, which have coupling kinematics parameters.


2012 ◽  
Vol 591-593 ◽  
pp. 754-757
Author(s):  
Hong Li Yun ◽  
Xiao Na Song

The kinematics analysis is carried out on a kind of 3-urps parallel mechanism (pm) with 6-dof. The positional inverse solution and Jacobean matrixes which is used to analyze the dexterity of mechanism are derived. Condition number is used as evaluating indicator of dexterity in this article, and its’ three-dimensional graphs are drawn when this mechanism in different attitudes. It is indicated that dexterity of moving is excelled than the rotary movement’s for this pm. The optimum dexterity can be obtained in the center of mechanism’s workroom, which can be applied to further characteristic analysis and kinematic design of mechanisms.


2015 ◽  
Vol 741 ◽  
pp. 687-690
Author(s):  
Lu Xi Chen ◽  
Zhan Xian Li ◽  
Zhi Jun Wang

Shift manipulator requires the transmission shift lever end Chinese characters ‘Wang’ motion, this paper proposes a kind of 2-Dof asymmetric spherical parallel mechanism to realize the movement. The structure characteristic and the trajectory of the manipulator are described. The position inverse solution of the 2-Dof spherical parallel mechanism is obtained by inverse kinematics analysis. Inverse kinematics simulation of the parallel mechanism is proposed finally.


2021 ◽  
Vol 11 (17) ◽  
pp. 8157
Author(s):  
Yesong Wang ◽  
Changhuai Lyu ◽  
Jiang Liu

This paper first designs a new 5-DOF parallel mechanism with 5PUS-UPU, and then analyses its DOF by traditional Grubler–Kutzbach and motion spiral theory. It theoretically shows that the mechanism meets the requirement of five dimensions of freedoms including three-dimensional movement and two-dimensional rotation. Based on this, the real mechanism is built, but unfortunately it is found unstable in some positions. Grassmann line geometry method is applied to analyze its unstable problem caused by singular posture, and then an improving method is put forward to solve it. With the improved mechanism, closed loop vector method is employed to establish the inverse position equation of the parallel mechanism, and kinematics analysis is carried out to get the mapping relationships between position, speed, and acceleration of moving and fixed platform. Monte Carlo method is used to analyze the workspace of the mechanism, to explore the influencing factors of workspace, and then to get the better workspace. Finally, an experiment is designed to verify the mechanism working performance.


2009 ◽  
Vol 69-70 ◽  
pp. 585-589 ◽  
Author(s):  
Bing Yan Cui ◽  
Zhen Lin Jin

The workspace and the kinematic transmission play important role on the design and optimation of the eblow joint. In this paper, a novel humanoid robot elbow joint based on 2-DOF orthogonal spherical parallel mechanism is proposed. Position of elbow joint is analyzed using the vector method and projection theory. The kinematic balance equation of the eblow joint is established by analyzing the relationship of its input and output velocity. The kinematics transmission evaluation index and the global kinematic transmission evaluation index of the elbow are defined, and the distribution of the global kinematics transmission evaluation index in the workspace is drawn. And rotation ability of the elbow joint is analyzed. The analytical results indicate the elbow has advantages of big volume, smooth boundary, good kinematic transmission, strong rotation ability, which can provide theoretical base for the applications of the elbow.


Sign in / Sign up

Export Citation Format

Share Document