Method of Compensation Control for Shaking Table

2011 ◽  
Vol 199-200 ◽  
pp. 1397-1404
Author(s):  
Zhen Bao Li ◽  
Zhen Yun Tang ◽  
Jin Bao Ji ◽  
Xiao Liang Li ◽  
Da Xing Zhou ◽  
...  

This paper presents the defects existing in shaking table control including the overshoot of displacement under low-middle frequency input using three variable parameter controls, the narrow bandwidth resulting from the performance of servo-valve and low accuracy of seismic wave reproduction because of specimen and table interaction. The effects of these factors on the stability and control accuracy of shaking table are discussed, and then the reasons of these problems existing are analyzed. The aim of this paper is to improve the stability and control accuracy of shaking table, thus, some corresponding strategies for compensation control are proposed. And a series of shaking table tests with one-story frame and two-story frame for verifying the validity of compensation control algorithm are performed.

1974 ◽  
Vol 96 (3) ◽  
pp. 820-826 ◽  
Author(s):  
D. T. Berry ◽  
G. B. Gilyard

Airframe/propulsion system interactions can strongly affect the stability and control of supersonic cruise aircraft. These interactions generate forces and moments similar in magnitude to those produced by the aerodynamic controls, and can cause significant changes in vehicle damping and static stability. This in turn can lead to large aircraft excursions or high pilot workload, or both. For optimum integration of an airframe and its jet propulsion system, these phenomena may have to be taken into account.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Widanalage Dakshina ◽  
Thiwanka Fernando

This research carries out the advanced phase in correlation with the previous published design of KF Implemented Flying Wing. At the primary stage the basic design was considered under omission of non-static components and turbulent conditions. At this stage the simulations have taken a step ahead with improved flow conditions and advanced modeling of the design. As per the design aspects the engines, pylons, landing gears and shape improvements were done with solid modeling. Due to the computational limitations this was divided in to two phases as cruising conditions with non-static components and further studies to be carried out in Takeoff and Landing conditions with extended landing gears. Under the stability and control conditions a separate research is being carried out in achieving the optimum capability. Propfan engine selected for extreme condition evaluations. The implementations were made without disrupting the base design which was presented in phase one basic simulation carried out prior to this. The simulation results deemed to be promising for the first stage as well as the effect of new components. The secondary target areas are to be carried out in further ongoing research as well


Author(s):  
Evgeny Eshchin ◽  

Variants of constructing control systems with a lagging argument for the positioning problem of an asyn-chronous electric motor (IM) and the problem of energy-saving AM control are considered. Variants of control of an asynchronous electric drive with IM on the basis of predicting its state are considered. The analytical de-sign of the predictor (ADP) is an asynchronous motor control algorithm based on the mathematical theory of optimal control (L.S. Pontryagin's maximum principle). The control algorithm (ADP) ensures the achievement of the minimum value of the target functional, which (functional), in contrast to the structure of the classical pre-dictive control system (Model Predictive Control - MPC), is clearly not part of the ADP. Calculations of the movements of an electric drive with an IM in the control modes of its state, taking into account delays along the channels for assessing its state and control, as well as using predictors, are given. The effectiveness of the in-troduction of predictors to improve the stability and quality of control of an electric drive with an IM has been established.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Mostafa Y. B. Elshabasy ◽  
Yongki Yoon ◽  
Ashraf Omran

The main objective of the current investigation is to provide a simple procedure to select the controller gains for an aircraft with a largely wide complex flight envelope with different source of nonlinearities. The stability and control gains are optimally devised using genetic algorithm. Thus, the gains are tuned based on the information of a single designed mission. This mission is assigned to cover a wide range of the aircraft’s flight envelope. For more validation, the resultant controller gains were tested for many off-designed missions and different operating conditions such as mass and aerodynamic variations. The results show the capability of the proposed procedure to design a semiglobal robust stability and control augmentation system for a highly maneuverable aircraft such as F-16. Unlike the gain scheduling and other control design methodologies, the proposed technique provides a semi-global single set of gains for both aircraft stability and control augmentation systems. This reduces the implementation efforts. The proposed methodology is superior to the classical control method which rigorously requires the linearization of the nonlinear aircraft model of the investigated highly maneuverable aircraft and eliminating the sources of nonlinearities mentioned above.


1997 ◽  
Vol 119 (3) ◽  
pp. 486-490 ◽  
Author(s):  
Jia-Yush Yen ◽  
Chih-Jung Huang ◽  
Shu-Shung Lu

This paper presents the precision control of drive devices with significant stick-slip friction. The controller design follows the Pseudo-Derivative Feedback (PDF) control algorithm. Using the second order system model, the PDF controller offers arbitrary pole placement. In this paper, the stability proof for the controller with stick-slip friction is presented. On the basis of this proof, the stability criteria are derived. The paper also includes both the computer simulation and the experimental works to confirm the theoretical result. The experiments conducted on a Traction Type Drive Device (TTDD) shows that control accuracy of as high as ±1 arc – second is achieved.


Sign in / Sign up

Export Citation Format

Share Document