The Relationship Analysis of Surrounding Rock Stability and Continental Sedimentary Environment

2011 ◽  
Vol 217-218 ◽  
pp. 1580-1583
Author(s):  
Cui Liang ◽  
Chao Zhang ◽  
Nian Jie Ma ◽  
Ming Ming Wen ◽  
Chong Li

The continental coal-bearing strata are mainly formed in the flood plain, delta plain and lake shore subfacies. Through the study on the sedimentary cause of differences of rock strength and sedimentary location, the paper analyzes the internal relationship between sedimentary environment and surrounding rock stability based on different coal-forming models. To take an example of Shendong Coal Mine Area, the differences of surrounding rock stability in various sedimentary environments are quantitative analyzed. The paper’s research promotes the combination between surrounding rock stability and sedimentology.

2013 ◽  
Vol 438-439 ◽  
pp. 979-982
Author(s):  
Xian Kai Bao

This paper analyzes various factors about the surrounding rock stability in tunnel, on this basis, proposes control methods and ideas about the surrounding rock stability in tunnel, and discusses in detail the relationship of bolt working load and the surrounding rock stability. Using the approach of non-destructive monitoring bolts can be well monitor the surrounding rock stability of entire process. The result will provide great reference for research studies on stability of surrounding rock and the engineering construction.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhiming Yan ◽  
Jinlong Wang ◽  
Xuetian Wang

The Dananhu coalfield, at the southern margin of Turpan-Hami Basin, Xinjiang, has good coal-forming geological conditions. Due to the low research level on the depositional environment and coal accumulation, the comprehensive coal mining is restricted. Based on drilling and sectioning outcrop data, the depositional characteristics, lithofacies, paleogeography, and coal accumulation of the coal-bearing formations in western Dananhu coalfield are analyzed. The middle member of the Xishanyao Formation is the major coal-bearing strata of the Dananhu coalfield, composed of conglomerate, sandstone, siltstone, mudstone, and combustible organic rock, which can be further subdivided into 14 lithofacies according to substance composition, sediment texture, and structure. During the early Middle Jurassic coal-accumulating period, alluvial fan, fluvial plain, fluvial delta, and shallow lacustrine deposits were developed from northeast to southwest in the western Dananhu mining area. Coal accumulation was most developed in the center regions of the study area extending from northeast to southwest, which were primarily concentrated in margin fans, floodplains, interdeltaic bays, and lakeshore environments, especially the transitional zone between the fluvial plain and the delta plain in the west of No. 1 mining area. This coal accumulation was mainly controlled by synsedimentary tectonic subsidence and clastic sediments supply or sedimentary environment, where tectonic subsidence was the primary controlling factor and the source supply was the secondary controlling factor for coal accumulation, which provided theoretical support for the coal prediction and geological exploration in western Dananhu coalfield.


2020 ◽  
Vol 7 (2) ◽  
pp. 40-49
Author(s):  
Abdul Rivai

This study aims to determine and understand the relationship between work motivation and participatory leadership with the work behavior of the Functional Staff of the Education and Culture Office of East Nusa Tenggara Province because the Province of East Nusa Tenggara is one of the provinces whose development and growth is relatively slower compared to other provinces in Indonesia. The study population was the functional staff who did not have a structural position of 94 people. Samples were taken as many as 75 people. Data collection using a questionnaire instrument.Based on hypothesis testing, this study found: (1) there was a relationship between work motivation and work behavior in which work motivation contributed 49.29% to work behavior, (2) there was a positive relationship between participative leadership and work behavior in which participative leadership contributed 51.49% of work behavior, and there is a positive relationship between work motivation and participatory leadership together with work behavior. Where work motivation and participatory leadership together contribute 67.01% to work behavior. From the three findings, the conclusions of this study are stated that: (a) Work behavior provides a good relationship to increase work motivation, (b) Work behavior can be improved by considering participatory leadership, by involving employees in every decision making, respecting opinions and proposals employees, and enhance collaboration.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1200
Author(s):  
Yong-Joon Jun ◽  
Seung-ho Ahn ◽  
Kyung-Soon Park

The Green Remodeling Project under South Korea’s Green New Deal policy is a government-led project intended to strengthen the performance sector directly correlated with energy performance among various elements of improvement applicable to building remodeling by replacing insulation materials, introducing new and renewable energy, introducing high-efficiency equipment, etc., with public buildings taking the lead in green remodeling in order to induce energy efficiency enhancement in private buildings. However, there is an ongoing policy that involves the application of a fragmentary value judgment criterion, i.e., whether to apply technical elements confined to the enhancement of the energy performance of target buildings and the prediction of improvement effects according thereto, thus resulting in the phenomenon of another important value criterion for green remodeling, i.e., the enhancement of the occupant (user) comfort performance of target buildings as one of its purposes, being neglected instead. In order to accurately grasp the current status of these problems and to promote ‘expansion of the value judgment criteria for green remodeling’ as an alternative, this study collected energy usage data of buildings actually used by public institutions and then conducted a total analysis. After that, the characteristics of energy usage were analyzed for each of the groups of buildings classified by year of completion, thereby carrying out an analysis of the correlation between the non-architectural elements affecting the actual energy usage and the actual energy usage data. The correlation between the improvement performance of each technical element and the actual improvement effect was also analyzed, thereby ascertaining the relationship between the direction of major policy strategies and the actual energy usage. As a result of the relationship analysis, it was confirmed that the actual energy usage is more affected by the operating conditions of the relevant building than the application of individual strategic elements such as the performance of the envelope insulation and the performance of the high-efficiency system. In addition, it was also confirmed that the usage of public buildings does not increase in proportion to their aging. The primary goal of reducing energy usage in target buildings can be achieved if public sector (government)-led green remodeling is pushed ahead with in accordance with biased value judgment criteria, just as in the case of a campaign to refrain from operating cooling facilities in aging public buildings. However, it was possible to grasp through the progress of this study that the remodeling may also result in the deterioration of environmental comfort and stability, such as the numerical value of the indoor thermal environment. The results of this study have the significance of providing basic data for pushing ahead with a green remodeling policy in which the value judgment criteria for aging existing public buildings are more expanded, and it is necessary to continue research in such a direction that the quantitative purpose of green remodeling, which is to reduce energy usage in aging public buildings, and its qualitative purpose, which is to enhance their environmental performance for occupants’ comfort, can be mutually balanced and secured at the same time.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2012 ◽  
Vol 446-449 ◽  
pp. 1432-1436
Author(s):  
Suo Wang

In order to predict tunnel surrounding rock pressure, this paper puts forward a series of dynamic numerical simulative model on the tunnel excavation. According to the change of rock damage in the construction program, it adjusts dynamically the mechanical material parameters of surrounding rock. So the model achieves the purpose which is controlling and simulating the process of tunnel progressive damage. In accordance with the numerical simulative results, it analyzes the relationship between the rock parameters with the plastic strain, radial displacement. Then this paper proposes a prediction method of tunnel surrounding rock pressure based on the theory of the progressive damage and method of characteristic curve. Finally, it compares the pressure on the numerical simulative models with on the site date, and it proves that the prediction method has practical engineering value.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


Sign in / Sign up

Export Citation Format

Share Document