Elastohydrodynamic Lubrication Design of Planetary Gear Transmission

2011 ◽  
Vol 228-229 ◽  
pp. 681-685
Author(s):  
Pei De Bao ◽  
Jun Xie ◽  
Xiao Qin Yin ◽  
Qi Zhi Yang ◽  
Lu Zhong Ma

Based on elastic hydrodynamic lubrication (EHL) theory, an EHL model of the meshing between the sun gear and planet gear in planetary gear transmission was established. The EHL oil film thicknesses at meshing areas and those distributions for two operation cases were calculated: one case with the sun gear as the driving gear and another case with the ring gear as the driving gear. The Lubrication with second case was worse. Through the many comparing calculations the lubrication film thickness can be significantly increased by right parameter design. Reasonable raise of lubricant viscosity can get better gear lubrication. Increased gear pressure angle can greatly increase the oil film thickness. The increase of oil film thickness can improve the lubrication of gears and prevent wearing and reduce the production cost of gears, which have great practical value.

2016 ◽  
Vol 68 (6) ◽  
pp. 647-657 ◽  
Author(s):  
Kaiyue Li ◽  
Guoding Chen ◽  
Deng Liu

Purpose The analysis of lubricating properties and efficiency is important for aviation high-speed gear. So far, the project of lubricating properties and efficiency are processing under the condition of a given lubricating state, which is still depending on practical experience. This paper aims to mostly focus on the analysis of given lubricating state but lost sight of the relevance of lubrication parameters and lubricating state, which not only makes the analysis of aviation high-speed gear transmission and efficiency fail to trace to practical situation but also has an adverse effect on the reliance and validity of the project. Design/methodology/approach Based on this, the numerical model of spraying oil and oil film spreading is established, and the quantitative relationship between spray lubrication parameters and spreading characteristics of oil film is studied. According to the geometric and mechanical conditions of meshing points and taking the influence of rich-oil/starved-oil lubrication and roughness of teeth surface into consideration, corrected film thickness under condition of elasto-hydrodynamic lubrication and lubricating state of mesh points are analyzed. On this basis, power consumption and efficiency of gear transmission are also calculated by figuring out the solid friction and oil friction separately. Findings Through the research of this thesis, the effect of friction power consumption and efficiency with lubrication parameters is discussed. The effect of lubrication parameters on friction power consumption and efficiency of gear is complex. With the increase of spreading film thickness and film length, the frictional power consumption is less and the efficiency is higher. Originality/value This work provides a systematic technological approach to lubrication design and efficiency calculation of aviation high-speed gear transmission, which has remarkable engineering significance for the accurate lubrication design of the aviation mechanical parts.


Author(s):  
Xinxiao Bian ◽  
Quan Wang

The surface quality of cold rolled strip is related to a greater extent on the rolling oil film thickness, and there are many factors that affect the oil film thickness. Considering the various factors comprehensively, an integrated mathematical model is established, such as roughness of rolls and strips, elastohydrodynamic lubrication, friction heat and plastic deformation heat in the rolling zone, viscosity varying with temperature and pressure, etc. A series of equations are developed, such as the Reynolds equation of partial membrane hydrodynamic lubrication based on average flow theory, equation of oil film thickness on rough elastic surface, the thermal interface equations between strip, oil film and roller surface, surface asperity contact pressure equation, lubricant viscosity and density equations, motion equation of the oil film, etc. This model is solved by finite difference method to get the film pressure, oil film thickness, and temperature distribution in the rolling zone. The average rolling pressure, the roll, and strip temperature calculated by the model are very close to the field test results. Comparing the minimum film thickness calculated by the model with the regression formula of other literature test, the error is less than 10%. The minimum oil film thickness is analyzed. It increases with the decrease of the rolling force and is approximately proportional to the rolling speed and lubricant viscosity.


2010 ◽  
Vol 136 ◽  
pp. 307-311
Author(s):  
Jian Ping Liu ◽  
Xin Yi Zhang ◽  
Qing Xuan Jia

Modified Reynolds equation is deduced considering surface tension in this paper. The influence of surface tension on lubrication and elastohydrodynamic lubrication is analyzed. Result shows surface tension has apparent influence on oil film thickness. It makes minimum film thickness increase under relative thin film thickness. The influence decreases rapidly with the increasing of film thickness. Surface tension has little influence on oil film pressure distribution.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tomoko Hirayama ◽  
Mitsutaka Ikeda ◽  
Toshiteru Suzuki ◽  
Takashi Matsuoka ◽  
Hiroshi Sawada ◽  
...  

The effects of nanotexturing on oil film thickness and shape under pointcontact elasto-hydrodynamic lubrication (EHL) conditions were experimentally investigated. A disk-onball friction tester with an optical interferometer was used to measure oil film thickness and to observe the oil film shape. Periodic groove structures with a spiral, perpendicular, or parallel shape and with various groove depths and distances were formed by irradiation of a femtosecond laser onto the surface of steel balls. These nanotextured balls were tested under a load of 20 N and at rotational speeds from 1.0 to 3.0 m/s. Most of the balls with nanotexturing had a thicker oil film than those without texturing. The groove depth and angle were the key parameters determining the thickness of the oil film as they controlled the amount of side leakage of oil from the contact point. Optimization of these parameters resulted in an oil film that was almost twice as thick as that on the ball without texturing.


Lubricants ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 95
Author(s):  
Oliver Feuchtmüller ◽  
Nino Dakov ◽  
Lothar Hörl ◽  
Frank Bauer

The oil film generation of a U-cup rod seal and the oil film thickness on the rod after outstroke were analyzed analytically, numerically, and experimentally. The analyzed sealing system consists of an unmodified, commercially available U-cup, a polished rod, and mineral oil. The inverse theory of hydrodynamic lubrication (IHL) and an elastohydrodynamic lubrication (EHL) model—both based on the Reynolds equation for thin lubricating films—were utilized to simulate the oil film generation. In the EHL analysis, physical parameters and numerical EHL parameters were varied. Both the analytical and numerical results for the varied parameters show that the film thickness follows a square-root function (i.e., with a function exponent of 0.5) with respect to the product of dynamic viscosity and rod speed, also referred to as the duty parameter. In comparison to the analytical and numerical results, the film thickness obtained via ellipsometry measurements is a function of the duty parameter with an exponent of approximately 0.85. Possible causes for the discrepancy between theory and experiments are discussed. A potential remedy for the modeling gap is proposed.


2020 ◽  
Vol 66 (9) ◽  
pp. 513-522
Author(s):  
Xiangyang Xu ◽  
Xupeng Fan ◽  
Peitang Wei ◽  
Baojun Yang

To analyse the lubrication characteristics of harmonic gears and lay the foundation for the study of its gear tooth failure performance and dynamic characteristics, based on the tooth contact geometry of harmonic gear, the integrated curvature radius, tooth load, and entrainment velocity at the meshing point of the gear teeth in the harmonic gear transmission are analysed. A finite-length line contact elastohydrodynamic lubrication (EHL) model for harmonic gears is established. The numerical calculation method is used to solve the oil film thickness and pressure distribution in the lubricating area, and the effects of rotational speed and temperature on the contacting load ratio and film thickness ratio of the meshing area are studied, as well as the change of oil film stiffness under different working conditions. The results show that along the meshing direction, the pressure is small at the end and reaches a peak at the centre, and the film thickness is the largest in the entrance area and is evenly distributed in the centre contact area. As the speed increases, the gear tooth contact load ratio decreases, the oil film thickness ratio increases, the stiffness of the oil film decreases significantly, and the lubrication effect is improved; but the temperature has the opposite effect. Proper increase of rotation speed and decrease of oil temperature can effectively improve the lubrication characteristics of the system.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


2002 ◽  
Vol 124 (4) ◽  
pp. 811-814 ◽  
Author(s):  
Chaohui Zhang ◽  
Jianbin Luo ◽  
Shizhu Wen

In this paper, a viscosity modification model is developed which can be applied to describe the thin film lubrication problems. The viscosity distribution along the direction normal to solid surface is approached by a function proposed in this paper. Based on the formula, lubricating problem of thin film lubrication (TFL) in isothermal and incompressible condition is solved and the outcome is compared to the experimental data. In thin film lubrication, according to the computation outcomes, the lubrication film thickness is much greater than that in elastohydrodynamic lubrication (EHL). When the velocity is adequately low (i.e., film thickness is thin enough), the pressure distribution in the contact area is close to Hertzian distribution in which the second ridge of pressure is not obvious enough. The film shape demonstrates the earlobe-like form in thin film lubrication, which is similar to EHL while the film is comparatively thicker. The transformation relationships between film thickness and loads, velocities or atmosphere viscosity in thin film lubrication differ from those in EHL so that the transition from thin film lubrication to EHL can be clearly seen.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


Sign in / Sign up

Export Citation Format

Share Document