Function of Microorganism and Efficiency on Livestock Wastewater Treatment by Constructed Rapid Infiltration System

2011 ◽  
Vol 233-235 ◽  
pp. 728-732
Author(s):  
Yan Juan Liu ◽  
Ming Zhu ◽  
Ya Wen Yang ◽  
Ai Bin Kang

Taking high concentration livestock wastewater as research object, The results showed that the constructed rapid infiltration system operated at the largest hydraulic loading of 0.26m/d, and during the period of the flooding for ond day and drying for two days, the main efficiency of pollutants occurred in filter height of 0.65m, with the maximum removal efficiency of COD and ammonia nitrogen as 80%; TF and MLVSS also reached maximum.

REAKTOR ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 18-25
Author(s):  
Ariani Dwi Astuti ◽  
Dewi Intania Ayu

Tofu which is made by grinding soy bean, generates huge amount of wastewater and thus considered as one of the most polluted food-industrial effluent owing to its high values of organic contents. The small industries of tofu preparation process release the wastewater directly into the water body without being treated first. Prior to discharge this wastewater into the waterbody, the wastewater must be treated to reduce the possibility of negative impact and the contamination of the waterbody. For these small industries, the best alternative of wastewater treatment is one which has the following criteria: easy in operation, low cost operation, low volumes of sludge produced, and can be used in high concentration wastewater. In this research, bioreactor anaerobic-aerobic with media bioball is used. The highest removal efficiency of COD took place in anaerobic zones. Bioreactors were operated with the variations of retention time at 24 hours, 18 hours, and 12 hours. The COD removal efficiency for Hydraulic Retention Time (HRT) of 24 hours, 18 hours and 12 hours were found 90.3% (organic loading rate is 15.1 kg COD/m3.day), 84.4% and 76.3% respectively. The experiment showed that the longer of the hydraulic retention time (HRT), the higher the removal efficiency could be achieved. These occurred because a longer HRT will extend the contact time between wastewater and microorganisms attached. Therefore, microorganisms have a longer time to degrade organic matter in wastewater. Although the removal efficiency in these three-HRT was found high, the effluent of the reactor was still above the effluent standard based on regulation of Ministry of Environmental Permen LH No. 5/2014. Kinetics using Eckenfelder Equation results R2 equal to 0.9991, n equal to 0.293 and K equivalent to 7.3577 mg/L. Keywords: tofu wastewater, anaerobe, aerobe, bioball, wastewater, treatment, attached growth


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 720 ◽  
Author(s):  
Jin-Pil Kim ◽  
Dal Rae Jin ◽  
Wonseok Lee ◽  
Minhee Chae ◽  
Junwon Park

In this study, livestock wastewater treatment plants in South Korea were monitored to determine the characteristics of influent and effluent wastewater, containing four types of veterinary antibiotics (sulfamethazine, sulfathiazole, chlortetracycline, oxytetracycline), and the removal efficiencies of different treatment processes. Chlortetracycline had the highest average influent concentration (483.7 μg/L), followed by sulfamethazine (251.2 μg/L), sulfathiazole (230.8 μg/L) and oxytetracycline (25.7 μg/L), at five livestock wastewater treatment plants. Sulfathiazole had the highest average effluent concentration (28.2 μg/L), followed by sulfamethazine (20.8 μg/L) and chlortetracycline (11.5 μg/L), while no oxytetracycline was detected. For veterinary antibiotics in the wastewater, a removal efficiency of at least 90% was observed with five types of treatment processes, including a bio-ceramic sequencing batch reactor, liquid-phase flotation, membrane bioreactor, bioreactor plus ultrafiltration (BIOSUF) and bio best bacillus systems. Moreover, this study evaluated the removal efficiency via laboratory-scale experiments on the conventional contaminants, such as organic matter, nitrogen, phosphorus and veterinary antibiotics. This was done using the hydraulic retention time (HRT), under three temporal conditions (14 h, 18 h, 27 h), using the anaerobic–anoxic–oxic (A2O) process, in an attempt to assess the combined livestock wastewater treatment process where the livestock wastewater is treated until certain levels of water quality are achieved, and then the effluent is discharged to nearby sewage treatment plants for further treatment. The removal efficiencies of veterinary antibiotics, especially oxytetracycline and chlortetracycline, were 86.5–88.8% and 87.9–90.8%, respectively, exhibiting no significant differences under various HRT conditions. The removal efficiency of sulfamethazine was at least 20% higher at HRT = 27 h than at HRT = 14 h, indicating that sulfamethazine was efficiently removed in the A2O process with increased HRT. This study is expected to promote a comprehensive understanding of the behavior and removal of veterinary antibiotics in the livestock wastewater treatment plants of South Korea.


2016 ◽  
Vol 107 ◽  
pp. 102-112 ◽  
Author(s):  
Philani Ncube ◽  
Marc Pidou ◽  
Tom Stephenson ◽  
Bruce Jefferson ◽  
Peter Jarvis

2012 ◽  
Vol 209-211 ◽  
pp. 2053-2057
Author(s):  
Jin Xiang Liu ◽  
Shui Bo Xie ◽  
Chun Ning Cheng ◽  
Jin Sheng Lou ◽  
Shi You Li

The effect of bed material heights on treatment performance of pollutants from micro-polluted raw Water was studied in zeolite - Ceramics biological aerated filter(ZCBAF) technology. The test results showed the removal rate of CODMn, NH4+-N and UV254 will improve with the increase of media height, most of CODMn and UV254 were removed within the first 440mm , when the media height over 440mm, the effect of increase height is inconspicuous removal, and ammonia-nitrogen removal has evident improvement during 220-440mm. At the media height of 20mm, 40mm and 60mm in ZCBAF respectively, the removal efficiency of CODMn is 18.05%,31.6% and 38.62% respectively, NH4+-N removal efficiency is 29.78%,81.28% and 93.02% respectively , and UV254 removal efficiency is 7.81%,10.11% and 11.26% respectively under the air/water ratio of 1:1 and the hydraulic loading of 1.2m3/(m2.h). Removal rate of CODMn was decreased with the increase of hydraulic loading, and removal effect of NH4+-N and UV254 had not big influence.


2011 ◽  
Vol 71-78 ◽  
pp. 2186-2189 ◽  
Author(s):  
Jian Gen Wang ◽  
Ya Hui Liu

The removal efficiency of CODCr and ammonia nitrogen of the high concentration of ammonia nitrogen from tannery effluent by membrane bioreactor (MBR) was investigated. The results showed that when the operation of MBR is stable, influent CODCr loads are less than 4.8 kg/m3•d, the average removal rate of CODCr was over 88%, the removal rate of ammonia nitrogen reached to 90%; when dissolved oxygen (DO) was 1.2mg/L and 1.8 mg/L, the reactor still has excellent treatment efficiency, and the removal rate of CODCr and ammonia nitrogen can achieved over 90%. In addition, through the study of membrane flux, it is easy to find that membrane flux decreases rapidly, the membrane requires periodic cleansing.


2011 ◽  
Vol 183-185 ◽  
pp. 278-281
Author(s):  
Zhi Xiao Liu ◽  
Jin Long Zuo

With rapid development of food industry, the production of soybean sauce is increasing in recent years. The sauce wastewater is doing greater and greater harm to the water environment. In order to tackle this problem, the operation time on the sauce wastewater treatment were investigated. The results showed that the process has a better effect for ammonia nitrogen, the orthophosphate and COD removal. The effluent ammonia nitrogen was less than 5mg/L and the ammonia nitrogen removal efficiency could reach about 90% with the aeration time 2 h-3.5 h. The orthophosphate increased during the anoxic stage while decreased during the aerobic stage. At the end of the aerobic stage, the orthophosphate concentration and the COD could reach about 1mg/L and 21 mg/L respectively when aeration time was 2 h-3.5 h. The better operation time (the aeration time) was at 2 h-3.5 h and the system could get a good water quality for sauce wastewater treatment.


2013 ◽  
Vol 448-453 ◽  
pp. 536-539
Author(s):  
Bin Liu ◽  
Xu Ya Peng ◽  
Qi Tian ◽  
Hua Zhao

Landfill leachate treatment is a major problem to be solved in the field of environmental protection, and ammonia nitrogen is one of the major pollutants in landfill leachate, whose processing technology needs further improvement. In this paper, ultrasound/ultraviolet co-oxidation technology was directly applied to the treatment of high concentration landfill leachate without the pretreatment operations of dilution, filter, and adjusting the pH conditions. The results showed that: ultrasonic and ultraviolet had certain effects on the ammonia nitrogen removal, and the ammonia nitrogen removing effects became better when the ultrasonic power was greater, or the ultraviolet wavelength was shorter. When the ultrasonic power was 100 W, the ammonia nitrogen removal efficiency was 25.2%, and the UV of 254 nm could decompose 20.2% of the ammonia nitrogen in landfill leathate. In the condition of aeration, ultrasonic and ultraviolet had good synergistic effect on leachate ammonia nitrogen treatment. When the ultrasonic power was 100 W, UV wavelength was 254 nm, and the aeration rate was 150 L/h, the ammonia removal efficiency of high concentration leachate (ammonia nitrogen concentration of 1800 mg/L) reached 98.5% after 6 hours. The paper's research results provide a useful reference for the removal of landfill leachate ammonia nitrogen.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 218 ◽  
Author(s):  
Qi-yu Zhang ◽  
Ping Yang ◽  
Lai-sheng Liu ◽  
Zeng-jin Liu

There have been many studies on single strains in wastewater treatment and a new synthetic microbial community was prepared in this study, which provides a reference for the application of heterotrophic nitrification-aerobic denitrification in actual wastewater treatment. The growth period distribution of the composite bacteria was determined by plotting growth curves with different sole nitrogen sources, and the influence of the carbon source, carbon to nitrogen ratio (C/N) ratio, pH, and temperature on ammonia removal by the composite heterotrophic nitrifying-aerobic denitrifying strain was investigated. The optimal conditions for the heterotrophic nitrification process were sodium citrate as the carbon source, a C/N ratio of 10, a pH of 7, and a temperature of 30 °C, and only trace amounts of nitrate and nitrite were observed during the process. When the sequencing batch reactor (SBR) of a pig farm wastewater treatment plant was inoculated with the synthetic microbial community, the average removals of the chemical oxygen demand (COD) and ammonia nitrogen in the effluent were 92.61% and 20.56%, respectively. From the results, the synthetic microbial community was able to simultaneously perform heterotrophic nitrification-aerobic denitrification indicating great potential for full-scale applications.


Sign in / Sign up

Export Citation Format

Share Document