Influence of the combined packing on removal efficiency of ammonia nitrogenfrom high concentration ammonia nitrogen wastewater

Author(s):  
G Wang ◽  
W Wang ◽  
W Li ◽  
X Ren ◽  
C Liu
2011 ◽  
Vol 233-235 ◽  
pp. 728-732
Author(s):  
Yan Juan Liu ◽  
Ming Zhu ◽  
Ya Wen Yang ◽  
Ai Bin Kang

Taking high concentration livestock wastewater as research object, The results showed that the constructed rapid infiltration system operated at the largest hydraulic loading of 0.26m/d, and during the period of the flooding for ond day and drying for two days, the main efficiency of pollutants occurred in filter height of 0.65m, with the maximum removal efficiency of COD and ammonia nitrogen as 80%; TF and MLVSS also reached maximum.


2011 ◽  
Vol 71-78 ◽  
pp. 2186-2189 ◽  
Author(s):  
Jian Gen Wang ◽  
Ya Hui Liu

The removal efficiency of CODCr and ammonia nitrogen of the high concentration of ammonia nitrogen from tannery effluent by membrane bioreactor (MBR) was investigated. The results showed that when the operation of MBR is stable, influent CODCr loads are less than 4.8 kg/m3•d, the average removal rate of CODCr was over 88%, the removal rate of ammonia nitrogen reached to 90%; when dissolved oxygen (DO) was 1.2mg/L and 1.8 mg/L, the reactor still has excellent treatment efficiency, and the removal rate of CODCr and ammonia nitrogen can achieved over 90%. In addition, through the study of membrane flux, it is easy to find that membrane flux decreases rapidly, the membrane requires periodic cleansing.


2013 ◽  
Vol 448-453 ◽  
pp. 536-539
Author(s):  
Bin Liu ◽  
Xu Ya Peng ◽  
Qi Tian ◽  
Hua Zhao

Landfill leachate treatment is a major problem to be solved in the field of environmental protection, and ammonia nitrogen is one of the major pollutants in landfill leachate, whose processing technology needs further improvement. In this paper, ultrasound/ultraviolet co-oxidation technology was directly applied to the treatment of high concentration landfill leachate without the pretreatment operations of dilution, filter, and adjusting the pH conditions. The results showed that: ultrasonic and ultraviolet had certain effects on the ammonia nitrogen removal, and the ammonia nitrogen removing effects became better when the ultrasonic power was greater, or the ultraviolet wavelength was shorter. When the ultrasonic power was 100 W, the ammonia nitrogen removal efficiency was 25.2%, and the UV of 254 nm could decompose 20.2% of the ammonia nitrogen in landfill leathate. In the condition of aeration, ultrasonic and ultraviolet had good synergistic effect on leachate ammonia nitrogen treatment. When the ultrasonic power was 100 W, UV wavelength was 254 nm, and the aeration rate was 150 L/h, the ammonia removal efficiency of high concentration leachate (ammonia nitrogen concentration of 1800 mg/L) reached 98.5% after 6 hours. The paper's research results provide a useful reference for the removal of landfill leachate ammonia nitrogen.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


2020 ◽  
Vol 82 (9) ◽  
pp. 1795-1807 ◽  
Author(s):  
Dejun Bian ◽  
Zebing Nie ◽  
Fan Wang ◽  
Shengshu Ai ◽  
Suiyi Zhu ◽  
...  

Abstract A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.


Sign in / Sign up

Export Citation Format

Share Document