An Innovation Simulation Method for Flow State Evolution Laws of Water Inflow and Inrush in Course of Tunnel Excavation (Part I: Theories)

2011 ◽  
Vol 243-249 ◽  
pp. 2565-2570 ◽  
Author(s):  
Zhen Hao Xu ◽  
Shu Cai Li ◽  
Li Ping Li ◽  
Shao Shuai Shi

Hydrologic and engineering geological conditions of underground engineering and mining are highly complex. Geological hazards, especially water inflow or inrush, often occur during constructions. In order to get an insight into flow state evolution laws of water inflow and inrush in karst regions, as well as the influence of tunnel excavation, a numerical simulation method was proposed with COMSOL Multiphysics. Three water flow laws, Darcy’s law, Brinkman equations and incompressible Navier-Stokes equations, are coupled and linked with each other. Water pressure and velocity can be analyzed in the course of excavation, and it can be used for further study of risk control of water inflow and inrush.

2011 ◽  
Vol 261-263 ◽  
pp. 1104-1108 ◽  
Author(s):  
Zhen Hao Xu ◽  
Shu Cai Li ◽  
Li Ping Li ◽  
Shao Shuai Shi

In order to avoid heavy casualties and economic losses, and to get an insight into flow state evolution laws of water inflow and inrush in course of tunnel excavation, simulations were done with COMSOL Multiphysics. By coupling and linking different kinds of sub domain governing equations with boundary conditions and possibly initial conditions, three kinds of water flow state, Darcy’s law for water flow in the limestone aquifer, Brinkman equations for fast fluid in the karst conduit; and incompressible Navier-Stokes equations for freely moving of water in the excavated tunnel, are interacted and coupled with each other. Water pressure and velocity were studied and analyzed in course of tunnel excavation. It is proved that there will be no disastrous water inrush when the seepage deformation of the karst conduit is small, and that it is of vital importance to protect and support the clastic medium of karst conduit, and to strictly guard against any change of the permeability of the karst fillings.


2021 ◽  
Vol 11 (8) ◽  
pp. 3645
Author(s):  
Helin Fu ◽  
Pengtao An ◽  
Long Chen ◽  
Guowen Cheng ◽  
Jie Li ◽  
...  

Affected by the coupling of excavation disturbance and ground stress, the heterogeneity of surrounding rock is very common. Presently, treating the permeability coefficient as a fixed value will reduce the prediction accuracy of the water inflow and the external water pressure of the structure, leading to distortion of the prediction results. Aiming at this problem, this paper calculates and analyzes tunnel water inflow when considering the heterogeneity of permeability coefficient of surrounding rock using a theoretical analysis method, and compares with field data, and verifies the rationality of the formula. The research shows that, when the influence of excavation disturbance and ground stress on the permeability coefficient of surrounding rock is ignored, the calculated value of the external water force of the tunnel structure is too small, and the durability and stability of the tunnel are reduced, which is detrimental to the safety of the structure. Considering the heterogeneity of surrounding rock, the calculation error of water inflow can be reduced from 27.3% to 13.2%, which improves the accuracy of water inflow prediction to a certain extent.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1303
Author(s):  
Chenghua Shi ◽  
Xiaohe Sun ◽  
Shengli Liu ◽  
Chengyong Cao ◽  
Linghui Liu ◽  
...  

At present, jet-grouted horizontal waterproof curtain reinforcement has become an essential method for deep foundation pit groundwater control. However, there is still a lack of an effective theoretical calculation method for horizontal waterproof curtain reinforcement, and there is little research on the seepage laws of foundation pits under different horizontal waterproof curtain conditions. Based on Darcy’s seepage theory, theoretical analysis models of deep foundation pit seepage were established considering the effect of a horizontal curtain in a highly permeable formation. Through the established models, the calculation method of the water inflow and the water pressure under the condition of a horizontal curtain was derived. Then through indoor tests, the reliability of the theoretical calculation method was verified. Furthermore, the established theoretical calculation method is used to analyze the influence of various factors on the water inflow and the water pressure, such as the ratio of hydraulic conductivity of the horizontal curtain to surrounding soil, thickness, and reinforcement position of the horizontal curtain. It is found that the hydraulic conductivity ratio has the most significant influence on the seepage characteristics of the foundation pit. Finally, the design method was applied to an example of the horizontal waterproof curtain of the foundation pit, which is located at Juyuanzhou Station in Fuzhou (China). The water inflow per unit area is 0.36 m3/d in the foundation pit, and this implies that the design method of the horizontal waterproof curtain applied for the excavation case is good and meets the requirements of design and safety.


2012 ◽  
Vol 594-597 ◽  
pp. 1338-1342
Author(s):  
Qing Hai Li ◽  
Ren Shu Yang ◽  
Wei Ping Shi

In first mine of Chagannaoer, 2# coal seam, the mainly mined out layer, was 22.00m thickness in average. In order to meet the requirements of production ability, the mine was planned to apply mining technology of fully mechanized caving. Good or bad of top coal’s caving was an important prerequisite which decided the mining technology of top coal caving could be chosen or not. Due to lack of producing mines in this region and no experience to refer, we simulated the mining process of 2# coal seam using numerical software of FLAC3D, and gained evolution laws of stress and displacement of top coal and overlying strata and expansion laws of plastic zone. Through analysis, we got that the top coal damaged seriously and the top coal could be caved smoothly. Relying on the geological conditions of site, we verified the simulated results with method of fuzzy comprehensive evaluation. Combined with the research results, we decided that 2# coal seam’s caving was better and was convenient for top coal caving, so it was suitable for caving mining in 2# coal seam in first mine of Chagannaoer.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2018 ◽  
Vol 41 ◽  
pp. 01007
Author(s):  
Yuriy Kutepov ◽  
Aleksandr Mironov ◽  
Maksim Sablin ◽  
Elena Borger

This article considers mining and geological conditions of the site “Blagodatny” of the mine named after A.D. Ruban located underneaththe old open pit coal mine and the hydraulic-mine dump. The potentially dangerous zones in the undermined rock mass have been identified based onthe conditions of formation of water inflow into mine workings. Safe depthof coal seams mining has been calculated depending on the type of water body – the hydraulic-mine dump.


2021 ◽  
Author(s):  
Barkane Aicha ◽  
Sami Mezhoud

Abstract The response of a massif to stresses generated by tunnel excavation depends essentially on the geological conditions, the geometry of the tunnel and its underground position. The major problem related to the construction of these structures is to ensure the stability of the whole tunnel-ground, by controlling the various deformation generated during the constructionIn this context, the present paper examines the effect of these conditions on the behavior of tunnels and the surrounding soil. The study is applied to a real tunnel, in this case the tunnel of Djebel El Ouahch, Algeria was taken as a reference model. The research includes a parametric study to evaluate the effect of several parameters on the behavior of the tunnel and surrounding soil such as the tunnel anchoring depth, the tunnel-soil interface rate, and the shape of the tunnel cross section. The analysis is performed using the PLAXIS 3D TUNNEL calculation code with an elastoplastic Mohr-coulomb model for the soil behavior. The results show that the strongest and most stable position is the mid-deep tunnel with a circular section, with a non-slip interface between the tunnel and the ground. These outcomes can help to understand the effects of various influences parameters which control the stability of the tunnel in a soil with bad characteristics.


2021 ◽  
Vol 236 ◽  
pp. 03029
Author(s):  
Ping Wei ◽  
Liuchuang Wei

Research at home and abroad shows that subway excavation often causes soil stress loss, resulting in settlement deformation and horizontal displacement of stratum. Therefore, combined with the special engineering geological conditions in Kunming area, the foundation deformation caused by subway excavation is studied, so as to provide an important foundation for proposing the protection measures of surrounding buildings and buried pipelines and promoting the construction of subway.


2014 ◽  
Author(s):  
P. Bigay ◽  
A. Bardin ◽  
G. Oger ◽  
D. Le Touzé

In order to efficiently address complex problems in hydrodynamics, the advances in the development of a new method are presented here. This method aims at finding a good compromise between computational efficiency, accuracy, and easy handling of complex geometries. The chosen method is an Explicit Cartesian Finite Volume method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with a ghost-cell method for geometry handling and a Level-set method for the treatment of biphase-flows. The explicit nature of the solver is obtained through a weakly-compressible approach chosen to simulate nearly-incompressible flows. The explicit cell-centered resolution allows for an efficient solving of very large simulations together with a straightforward handling of multi-physics. A characteristic flux method for solving the hyperbolic part of the Navier-Stokes equations is used. The treatment of arbitrary geometries is addressed in the hyperbolic and viscous framework. Viscous effects are computed via a finite difference computation of viscous fluxes and turbulent effects are addressed via a Large-Eddy Simulation method (LES). The Level-Set solver used to handle biphase flows is also presented. The solver is validated on 2-D test cases (flow past a cylinder, 2-D dam break) and future improvements are discussed.


2021 ◽  
Author(s):  
Robert Viesca

<p>In models of faults as elastic continua with a frictional interface, earthquake nucleation is the initiation of a propagating dynamic fault rupture nucleated by a localized slip instability. A mechanism capturing both the weakening process leading to nucleation as well as fault healing between events, is a slip rate- and state-dependent friction, with so-called direct effect and evolution effects [Dieterich, JGR 1979; Ruina, JGR 1983]. While the constitutive representation of the direct effect is theoretically supported [e.g., Nakatani, JGR 2001; Rice et al., JMPS 2001], that of the evolution effect remains empirical and a number of state-evolution laws have been proposed to fit lab rock friction data [Ruina, JGR 1983; Kato and Tullis, GRL 2001; Bar-Sinai et al., GRL 2012; Nagata et al., JGR 2012]. These laws may share a common linearization about steady-state, such that a linear stability analysis of steady, uniform sliding yields a single critical wavelength for unstable growth of perturbations [Rice and Ruina, JAM 1983]. However, the laws’ differences are apparent at later, non-linear stages of instability development.</p><div>Previously, we showed that instability development under aging-law state evolution could be understood in terms of dynamical systems [Viesca, PR-E 2016, PRS-A 2016]: the non-linear acceleration of slip occurs as the attraction of a fault’s slip rate to a fixed point, corresponding to slip rate diverging with a fixed spatial distribution and rate of acceleration. Here we show that this framework can also be applied to understand slip instability development under all commonly used evolution laws, including the so-called slip and Nagata laws. To do so, we develop an intermediate state evolution law that transitions between the slip and aging laws with the adjustment of a single parameter. We show that, to within a variable transformation, the intermediate law is equivalent to the Nagata law and that fixed-point blow-up solutions exist for any value of the transition parameter. We assess these fixed-points’ stability via a linear stability analysis and provide an explanation for previously observed behavior in numerical solutions for slip rate and state evolution under various evolution laws [Ampuero and Rubin, JGR 2008; Kame et al., 2013; Bar-Sinai et al., PR-E 2013; Bhattacharya and Rubin, JGR 2014].</div>


Sign in / Sign up

Export Citation Format

Share Document