An Innovation Simulation Method for Flow State Evolution Laws of Water Inflow and Inrush in Course of Tunnel Excavation (Part II: Applications)

2011 ◽  
Vol 261-263 ◽  
pp. 1104-1108 ◽  
Author(s):  
Zhen Hao Xu ◽  
Shu Cai Li ◽  
Li Ping Li ◽  
Shao Shuai Shi

In order to avoid heavy casualties and economic losses, and to get an insight into flow state evolution laws of water inflow and inrush in course of tunnel excavation, simulations were done with COMSOL Multiphysics. By coupling and linking different kinds of sub domain governing equations with boundary conditions and possibly initial conditions, three kinds of water flow state, Darcy’s law for water flow in the limestone aquifer, Brinkman equations for fast fluid in the karst conduit; and incompressible Navier-Stokes equations for freely moving of water in the excavated tunnel, are interacted and coupled with each other. Water pressure and velocity were studied and analyzed in course of tunnel excavation. It is proved that there will be no disastrous water inrush when the seepage deformation of the karst conduit is small, and that it is of vital importance to protect and support the clastic medium of karst conduit, and to strictly guard against any change of the permeability of the karst fillings.

2011 ◽  
Vol 243-249 ◽  
pp. 2565-2570 ◽  
Author(s):  
Zhen Hao Xu ◽  
Shu Cai Li ◽  
Li Ping Li ◽  
Shao Shuai Shi

Hydrologic and engineering geological conditions of underground engineering and mining are highly complex. Geological hazards, especially water inflow or inrush, often occur during constructions. In order to get an insight into flow state evolution laws of water inflow and inrush in karst regions, as well as the influence of tunnel excavation, a numerical simulation method was proposed with COMSOL Multiphysics. Three water flow laws, Darcy’s law, Brinkman equations and incompressible Navier-Stokes equations, are coupled and linked with each other. Water pressure and velocity can be analyzed in the course of excavation, and it can be used for further study of risk control of water inflow and inrush.


2021 ◽  
Vol 11 (8) ◽  
pp. 3645
Author(s):  
Helin Fu ◽  
Pengtao An ◽  
Long Chen ◽  
Guowen Cheng ◽  
Jie Li ◽  
...  

Affected by the coupling of excavation disturbance and ground stress, the heterogeneity of surrounding rock is very common. Presently, treating the permeability coefficient as a fixed value will reduce the prediction accuracy of the water inflow and the external water pressure of the structure, leading to distortion of the prediction results. Aiming at this problem, this paper calculates and analyzes tunnel water inflow when considering the heterogeneity of permeability coefficient of surrounding rock using a theoretical analysis method, and compares with field data, and verifies the rationality of the formula. The research shows that, when the influence of excavation disturbance and ground stress on the permeability coefficient of surrounding rock is ignored, the calculated value of the external water force of the tunnel structure is too small, and the durability and stability of the tunnel are reduced, which is detrimental to the safety of the structure. Considering the heterogeneity of surrounding rock, the calculation error of water inflow can be reduced from 27.3% to 13.2%, which improves the accuracy of water inflow prediction to a certain extent.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 134 ◽  
Author(s):  
Weimin Yang ◽  
Zhongdong Fang ◽  
Hao Wang ◽  
Liping Li ◽  
Shaoshuai Shi ◽  
...  

In order to explore the catastrophic evolution process for karst cave water inrush in large buried depth and high water pressure tunnels, a model test system was developed, and a similar fluid–solid coupled material was found. A model of the catastrophic evolution of water inrush was developed based on the Xiema Tunnel, and the experimental section was simulated using the finite element method. By analyzing the interaction between groundwater and the surrounding rocks during tunnel excavation, the law of occurrence of water inrush disaster was summarized. The water inrush process of a karst cave containing high-pressure water was divided into three stages: the production of a water flowing fracture, the expansion of the water flowing fracture, and the connection of the water flowing fracture. The main cause of water inrush in karst caves is the penetration and weakening of high-pressure water on the surrounding rock. This effect is becoming more and more obvious as tunnel excavation progresses. The numerical simulation results showed that the outburst prevention thickness of the surrounding rock is 4.5 m, and that of the model test result is 5 m. Thus, the results of the two methods are relatively close to each other. This work is important for studying the impact of groundwater on underground engineering, and it is of great significance to avoid water inrush in tunnels.


2019 ◽  
Vol 11 (8) ◽  
pp. 2329
Author(s):  
Zhiqiang Zhang ◽  
Peng Xu ◽  
Heng Zhang ◽  
Kangjian Zhang

The problem of groundwater is very prominent in super-long tunnel construction, which brings serious potential safety hazards and economic losses to the project. The knowledge of dynamic change characteristics of groundwater and prediction of water inflow is the key to ensure rational design and safe construction in super-long tunnel. In this paper, numerical simulation and in situ observation are conducted to investigate dynamic change characteristics of groundwater and the prediction of water inflow based on the Daxiangling tunnel in Sichuan Province of China. The results show that the numerical model established with detailed geological data and validated with field monitoring data can effectively analyze dynamic change characteristics of groundwater, as well as predict water inflow. The initial state of groundwater is steady when the tunnel is unexcavated. Tunnel excavation has a significant influence on the distribution of groundwater. The flow direction of groundwater will change, and the contour lines of groundwater will be intensive at the tunnel face. These changes will be more obvious and dramatic when the tunnel is excavated into the fault zone, which is a signal that the water inrush is more likely to occur in the fault zone because of a lot of joints and fractures. A connected linear cavity is formed with tunnel holing-through and groundwater begins to flow vertically downwards to the tunnel. As far as the prediction of water inflow is concerned, the numerical method can more precisely calculate the value of water inflow with less than 15 percent relative error compared with the groundwater dynamics method.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Hongwen Jing ◽  
Wenxin Zhu

Water inrush caused by the wetting-drying cycle is a difficult problem in tunnel excavation. To investigate the effect of the wetting-drying cycle on the stability of the tunnel surrounding rock, physical experiments and numerical simulations regarding the process of tunnel excavation with different wetting-drying cycle numbers were performed in this study. The evolutions of stress, displacement, and pore water pressure were analyzed. With the increase in cycle number, the pore water pressure, vertical stress, and top-bottom approach of the tunnel surrounding rock increase gradually. And the increasing process could be divided into three stages: slightly increasing stage, slowly increasing stage, and sharply increasing stage, respectively. The failure process of the surrounding rock under the wetting-drying cycle gradually occurs from the roof to side wall, while the baseplate changes slightly. The simulation results showed that the maximum principal stress in the surrounding rock mass of the tunnel increases, while the minimum principal stress decreases. Furthermore, the displacement of the rock mass decreases gradually with the increasing distance from the tunnel surface. By comparing the simulation results with the experimental results, well consistency is shown. The results in this study can provide helpful references for the safe excavation and scientific design of a tunnel under the wetting-drying cycle.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jianli Shao ◽  
Fei Zhou ◽  
Wenbin Sun

Although the mechanism and influence of fault water inrush have been widely studied, there are still few studies on the migration of filling particles and the evolution process of seepage characteristics within faults. In this work, the coupling effects of water flow, particle migration, and permeability evolution are considered synthetically, and the evolution model of seepage characteristics with multifield coupling is established. This model was used to investigate the evolution process of water inrush within faults and the effects of water pressure, initial effective porosity, and initial permeability on water flow rate. The results show that the evolution of seepage characteristics can be divided into three phases: (i) low velocity seepage, (ii) drastic changes with substantial particle migration, and (iii) steady-state water flow. The multifield coupling causes the effective porosity, permeability, flow velocity, and particle concentration to accelerate each other during the dramatic phase. Moreover, the increases in initial water pressure, initial porosity, and initial permeability have different degrees of promotion on the water flow rate. Finally, the simulation results are approximately the same as the data of water inrush in the mining area, which verifies the correctness of the evolution model established in this work. This work provides new approaches to the evolution process and prevention of water inrush in faults.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Banghua Yao ◽  
Zhongwei Chen ◽  
Jianping Wei ◽  
Tianhang Bai ◽  
Shumin Liu

Although the impact of Karst Collapse Pillars (KCPs) on water inrush has been widely recognized and studied, few have investigated the fluid-solid interaction, the particles migration inside KCPs, and the evolution feature of water inrush channels. Moreover, an effective approach to reliably predict the water inrush time has yet to be developed. In this work, a suite of fully coupled governing equations considering the processes of water flow, fracture erosion, and the change of rock permeability due to erosion were presented. The inverse velocity theory was then introduced to predict the water inrush time under different geological and flow conditions. The impact of four different controlling factors on the fracture geometry change, water flow, and inrush time was discussed in detail. The results showed that the inverse velocity theory was capable of predicting the occurrences of water inrush under different conditions, and the time of water inrush had a power relationship with the rock heterogeneity, water pressure, and initial particle concentration and an exponential relationship with the initial fracture apertures. The general approach developed in this work can be extended to other engineering applications such as the tunneling and tailing dam erosion.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jinquan Liu ◽  
Weizhong Chen ◽  
Taogen Liu ◽  
Jianxin Yu ◽  
Jingliang Dong ◽  
...  

In order to investigate the water inrush mechanism in completely weathered granite, a large-scale triaxial testing system is designed and manufactured, which can induce the mass transfer and monitor the flow properties. Using this system, the effects of water pressure and initial porosity on the mass transfer and flow properties were determined, and the relative critical conditions for water inrush were proposed. The results indicate that (1) the particle transfer could cause an increase in porosity, permeability, and water inflow, which is the essential reason for water inrush in completely weathered granite. (2) Due to the effect of particle transfer, the flow properties may change from a Darcy to a non-Darcy flow, which is a key signal for water inrush. (3) With the increase of water pressure, the mass transfer, permeability, and water inflow increased gradually, and a critical value (p=0.6 MPa) that caused the water inrush was obtained. Furthermore, with the decrease of initial porosity, the mass transfer and flow properties were suppressed rapidly, and a critical porosity (0.23) to anti-inrush was observed. The results obtained can provide an important reference for understanding the mechanism, forecasting the risk, and taking the effective control measures for water inrush.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1303
Author(s):  
Chenghua Shi ◽  
Xiaohe Sun ◽  
Shengli Liu ◽  
Chengyong Cao ◽  
Linghui Liu ◽  
...  

At present, jet-grouted horizontal waterproof curtain reinforcement has become an essential method for deep foundation pit groundwater control. However, there is still a lack of an effective theoretical calculation method for horizontal waterproof curtain reinforcement, and there is little research on the seepage laws of foundation pits under different horizontal waterproof curtain conditions. Based on Darcy’s seepage theory, theoretical analysis models of deep foundation pit seepage were established considering the effect of a horizontal curtain in a highly permeable formation. Through the established models, the calculation method of the water inflow and the water pressure under the condition of a horizontal curtain was derived. Then through indoor tests, the reliability of the theoretical calculation method was verified. Furthermore, the established theoretical calculation method is used to analyze the influence of various factors on the water inflow and the water pressure, such as the ratio of hydraulic conductivity of the horizontal curtain to surrounding soil, thickness, and reinforcement position of the horizontal curtain. It is found that the hydraulic conductivity ratio has the most significant influence on the seepage characteristics of the foundation pit. Finally, the design method was applied to an example of the horizontal waterproof curtain of the foundation pit, which is located at Juyuanzhou Station in Fuzhou (China). The water inflow per unit area is 0.36 m3/d in the foundation pit, and this implies that the design method of the horizontal waterproof curtain applied for the excavation case is good and meets the requirements of design and safety.


Sign in / Sign up

Export Citation Format

Share Document