Effect of Temperature on Enhanced Treatment of Sewage from Discharging Points of Rivers by Biofilm Process Dosing with Enzyme

2011 ◽  
Vol 243-249 ◽  
pp. 3747-3750
Author(s):  
Gai Mei Guo

The research studied enhanced treatment of sewage from discharging points of rivers by biofilm process dosing with enzyme and promotion effect of enzyme on treatment of sewage by biofilm process, and investigated the changes of removal rates of the main pollution indexes at different temperature to ensure the optimal temperature. The research results indicated that temperature was an important factor influencing the removal rates of the main pollution indexes. When temperature was in the range of 5°C-8°C, the promotion effects of enzyme on the removals of CODCrand ammonia nitrogen (NH3-N) of sewage by biofilm process were not obvious. However when temperature were in the ranges of 15°C -18°C and 22°C -25°C, enzyme had the high promotion effects on the removals of the pollution indexes. Furthermore, within the certain temperature (5°C -25°C), the removal rates of CODCrand NH3-N were on the rise with the increase of temperature. When temperature increased from 5°C -8°C to 15°C -18°C, the removal rate of CODCrobviously increased, but when temperature continued to increase to 25, the rise trend of the removal rate of CODCrbecame slow. On the other hand, when temperature increased from 5°C -8°C to 22°C -25°C, the increase of the removal rate of NH3-N was always evident. Therefore, the optimal temperature was in the range of 22°C -25°C for the enhanced treatment of sewage from discharging points of rivers by biofilm process dosing with enzyme.

2011 ◽  
Vol 243-249 ◽  
pp. 3761-3764
Author(s):  
Gai Mei Guo

The research studied enhanced treatment of sewage from discharging points of rivers by biofilm process dosing with enzyme and the effect of phenol on removal rates of the main pollution indexes, and investigated promotion effect of enzyme (including the laboratory developed compounded enzyme and the foreign composite enzyme) on treatment of sewage by biofilm process. The research results indicated that when initial concentration of phenol was 5mg/L, the removal rates of phenol, CODCrand ammonia nitrogen obviously decreased compared to no phenol added to reactor A, B and C, and the negative effect of phenol was smaller on reactor B and C than on reactor A. Moreover, enzyme had good promotion effect on biofilm process during the sewage treatment process.


2011 ◽  
Vol 243-249 ◽  
pp. 3751-3754
Author(s):  
Gai Mei Guo

The research studied enhanced treatment of sewage from discharging points of rivers by biofilm process dosing with enzyme and promotion effect of enzyme on treatment of sewage by biofilm process, and investigated the effect of the ratio of CODCr to total nitrogen (C/N) on removals of pollution indexes. The research results indicated that with the decrease of C/N, the removal rates of CODCrwere stable and the removal rates of NH3-N increased, but the removal rates of TN obviously decreased in the three reactors. When C/N=5, the average removal rate of TN was higher than 30% in reactor B and C. When C/N=3, it decreased and maintained about 30%. When C/N=2, it was low and approximately 20%. When C/N=5, 3 or 2,the removal rates of CODCr, NH3-N and TN greatly increased in reactor B and C than in reactor A, which indicated that the promotion effects of the composite enzyme and the compounded enzyme on the removals of the target pollutants were favorable.


2011 ◽  
Vol 243-249 ◽  
pp. 3743-3746
Author(s):  
Gai Mei Guo

The research studied enhanced treatment of sewage from discharging points of rivers by biofilm process dosing with enzyme and the effect of mineral oil on removal rates of the main pollution indexes, and investigated promotion effect of enzyme (including the laboratory developed compounded enzyme and the foreign composite enzyme) on treatment of sewage by biofilm process. The research results indicated that when mineral oil with the concentration of 20mg/L was added to reactor A, B and C, respectively, the removal rates of mineral oil, CODCrand ammonia nitrogen all obviously decreased. Meanwhile, the removal rates of mineral oil, CODCrand ammonia nitrogen were higher in reactor B and C than in reactor A, and the removal rates of them in reactor B were similar to them in reactor C, which indicated that enzyme had good promotion effect on biofilm process during the sewage treatment process.


2011 ◽  
Vol 183-185 ◽  
pp. 644-648
Author(s):  
Gai Mei Guo ◽  
Hui Fen Qin

This paper studied treatment of sewage from channel discharge with biological accelerator-biofilm process, and investigated the promoting effect of biological accelerator on biofilm process during the sewage treatment process. Meanwhile, compared the difference between the laboratory developed compounded enzyme and the foreign composite enzyme. The research results indicated that using biofilm process, the composite enzyme-biofilm process and the compounded enzyme-biofilm process for treating sewage, the removal rate of CODcr was separately 70.5%, 78.4% and 74.0% and that of ammonia nitrogen was separately 38.2%, 48.6% and 45.9%, which accounted for that under the strengthening action of biological accelerator, the treatment effect was remarkable for using biofilm process disposing channel disordered discharge sewage. Furthermore, the promoting effect of the compounded enzyme was equivalent to that of the composite enzyme for biofilm process, and the compounded enzyme could come into use instead of the composite enzyme.


2020 ◽  
Vol 21 (1) ◽  
pp. 49-55
Author(s):  
Nuryoto Nuryoto ◽  
Teguh Kurniawan ◽  
Indar Kustiningsih

ABSTRACTIndonesia has an abundant quantity of natural zeolites that have not yet been utilized maximally. On the other hand, fishpond farmers have a problem regarding the presence of ammonium in the fishpond water which will negatively impact to survival of fish, especially small fish. To solve this problem, this research was utilizing natural zeolite to degrade ammonium in the fishpond water. This research aimed to test mordenite natural zeolite from Bayah as an adsorbent to collaborate some variables impact to reach more maximal adsorption. The variables that were used to be observed were: mordenite natural zeolite from Bayah as an adsorbent which has been activated by 1-7 N H2SO4 and the other was without activation, ammonium concentration of 80-800 ppm, the particle size of adsorbent of 80 and 150 mesh, stirring speed of 600 and 800 rpm, and without stirring by duration adsorption time of 60 minutes. The research results showed that mordenite natural zeolite after activated was able to adsorb of 100% ammonium, while for the mordenite natural zeolite from Bayah without stirring was of 80%, by the same absorption time. These results will give significant benefits for fishpond farmers to increase their productivity because of the increase in fish survival.Keywords: adsorption, adsorbent, zeolite, amoniumABSTRAKKandungan zeolit alam di Indonesia cukup melimpah dan belum termanfaatkan secara maksimal. Pada sisi lain petani tambak dihadapkan pada masalah terdapatnya kandungan amonium di dalam air tambak, yang akan berdampak negatif bagi keberlangsungan hidup ikan, terutama ikan yang masih kecil. Penelitian ini mencoba memanfaatkan zeolit alam guna mendegradasi kandungan amonium dalam air tambak. Tujuan penelitian ini adalah melakukan pengujian terhadap zeolit alam mordenit dari Bayah sebagai adsorben, baik dilakukan dengan pengadukan maupun tanpa pengadukan, serta mengkolaborasi beberapa variabel yang berpengaruh agar hasil adsorpsi lebih maksimal. Observasi dilakukan dengan zeolit alam mordenit dari Bayah yang telah diaktivasi dengan 1-7 N H2SO4 maupun tanpa aktivasi, rentang konsentrasi larutan amonium 80-800 ppm, ukuran partikel adsorben 80 dan 150 mesh, kecepatan pengadukan 600 dan 800 rpm, dan tanpa pengadukan serta lamanya waktu penyerapan 60 menit. Hasil penelitian menunjukan hasil yang sangat baik, dan secara umum zeolit alam mordenit Bayah teraktivasi telah mampu melakukan adsorpsi amonium sebesar 100%, sedangkan untuk zeolit alam mordenit Bayah tanpa pengadukan sebesar 80% pada waktu adsorpsi yang sama.Kata kunci: adsorpsi, adsorben, zeolit, amonium


2014 ◽  
Vol 955-959 ◽  
pp. 1907-1910
Author(s):  
Su Chen ◽  
Lei Chao ◽  
Ning Chen ◽  
Lin Shan Wang ◽  
Xue Shao ◽  
...  

When the reactor is added with ectoine of concentrations of 0, 0.1, 1 and 10 mmol/L, the impacts on brine waste treatment efficiency are investigated. The results show that the outflow COD and ammonia nitrogen removal rates are the highest, when the ectoine concentration is 0.1 mmol/L. The brine waste treatment efficiency under addition of ectoine of 1 and 10 mmol/L is even worse than that without ectoine addition. It can be preliminarily determined that the best ectoine dosage is in between 0.1-1.0 mmol/L. When ectoine concentrations added in reactors are 0.2, 0.5, 0.8 and 1.0 mmol/L, the results show that the average reactor outflow COD and ammonia nitrogen removal rates are increased compared with those of reactor without adding ectoine. But when ectoine of 1.0 mmol/L is added, the outflow COD and ammonia nitrogen removal rates decrease. When ectoine dosage is 0.5 mmol/L, the reactor outflow COD and ammonia nitrogen values are the lowest, the removal rates are the highest, the average COD removal rate is 74.46%, and the average ammonium nitrogen removal rate is 54.97%. Compared with reactor without adding ectoine, COD and ammonium nitrogen removal rates are increased by 13.16% and 26.81%. Therefore, the best dosage of ectoine is 0.5 mmol/L.


1999 ◽  
Vol 564 ◽  
Author(s):  
Wei-Tsu Tseng ◽  
Ying-Lang Wang

AbstractThe correlation between microstructures of Al and W metal thin films and their respective CMP performance is investigated. It is found that CMP removal rate decreases with increasing grain size. In both cases, the textures of the metal films are altered and their resistivity increased after CMP. The phenomenon is more pronounced for polish under a greater down force. The table speed, on the other hand, has only minimum effects on microstructure and resistivity. The possible underlying mechanisms leading to this phenomenon are proposed and their potential impacts on metallization reliability is discussed.


2013 ◽  
Vol 664 ◽  
pp. 454-457
Author(s):  
Xiu Juan Yu ◽  
Li Hong Ning

The removal of ammonia nitrogen in simulated wastewater with 90mg/L NH4Cl was researched by ammonia stripping, electrochemical oxidation and the combination of the ammonia stripping and electrochemical oxidation. It is shown that the reduction of ammonia is enlarged with increasing of wastewater’s alkalinity during stripping. And the removal rates of ammonia nitrogen are 2.1% at pH2 and 43.1% at pH7 which is not related to the stripping time. The ammonia removal is higher efficiency in pH12 which is in the range of 45.1% and 61.4% when the stripping time is changed from 40 to 100 min. The removal rate of ammonia nitrogen is increased with the extension of electrolysis time by the way of the electrochemical oxidation. For 100min electrolysis, the ammonia removal in the cathodic and anodic compartments are 55.8% and 86.9%, respectively. Moreover, by using the ammonia stripping and electrochemical oxidation simultaneously, the ammonia removal in the cathodic and anodic compartments are up to 91.8% and 99.8% for 100min, respectively. The combining of the ammonia stripping with electrochemical oxidation technology has obviously synergistic effect in purifying ammonia nitrogen wastewater.


2018 ◽  
Author(s):  
Wenfa Ng

Temperature affects growth of bacteria by influencing enzyme and growth kinetics. Specifically, evolution selects for specific temperature range in which a microbe could thrive, and thus fix the temperature range in which biomolecule structure and function are finely tuned for coping with the thermal conditions prevailing within a cell at a particular temperature. Using aerobic culture in LB Lennox medium in shake flasks, this study aimed to understand the growth of Pseudomonas protegens Pf-5 (ATCC BAA-477) and Pseudomonas aeruginosa PRD-10 (ATCC 15442) at 25, 30 and 37 oC. Experiment results revealed that P. protegens Pf-5 grew very poorly at 37 oC (with maximal optical density of 0.66), while better growth was observed at 25 and 30 oC. Specifically, P. protegens Pf-5 appeared to be better adapted to growth at 25 oC, where the maximal optical density obtained was 5.3 compared to 4.6 at 30 oC. More importantly, two phase growth behaviour was observed during growth at 30 oC where a faster initial phase of growth was followed by a slower one. Growth at 25 and 30 oC exhibited similar pH trend, which suggested similar metabolic processes was activated during growth. On the other hand, P. aeruginosa PRD-10 demonstrated a more efficient conversion of LB Lennox medium into biomass where the maximal optical density obtained at all three growth temperatures were higher than those of P. protegens Pf-5. More importantly, growth of P. aeruginosa PRD-10 exhibited a clear adaptation to growth at 25 and 37 oC, while growth at 30 oC resulted in a lower biomass yield compared to that of 25 and 37 oC. On the other hand, pH variation during culture revealed that P. aeruginosa PRD-10 likely activated similar metabolic processes at all three growth temperatures, where a higher growth temperature would result in the net secretion of more alkaline metabolites. Collectively, P. protegens Pf-5 and P. aeruginosa PRD-10 demonstrated clear temperature adaptation at an evolutionary level. In addition, experiment data suggested that P. aeruginosa PRD-10 might have co-evolved with humans on a substantial time scale resulting in a temperature preference of 37 oC over 30 oC.


2010 ◽  
pp. 865-886
Author(s):  
Pedro Furtado

Data Warehouses are a crucial technology for current competitive organizations in the globalized world. Size, speed and distributed operation are major challenges concerning those systems. Many data warehouses have huge sizes and the requirement that queries be processed quickly and efficiently, so parallel solutions are deployed to render the necessary efficiency. Distributed operation, on the other hand, concerns global commercial and scientific organizations that need to share their data in a coherent distributed data warehouse. In this article we review the major concepts, systems and research results behind parallel and distributed data warehouses.


Sign in / Sign up

Export Citation Format

Share Document