Application of Buckling-Restrained Braces in Prefabricated Reinforced Concrete Frame

2013 ◽  
Vol 351-352 ◽  
pp. 1527-1531
Author(s):  
Hong Nan Wang ◽  
Hua Bo Liu ◽  
Jian Feng Wang

The old prefabricated reinforced concrete buildings have been designed with old standards that are lower than the present design code provisions. These buildings are likely to be vulnerable to severe damage or total collapse under strong seismic excitations. Hence, it is necessary to evaluate these buildings seismic performance and to retrofit them using appropriate methods. Buckling-restrained brace (BRB) is a kind of prospective energy dissipation component. As a brace, it is also a lateral force resistant member. Based on the characteristics of prefabricated frame and BRB, the time history analysis of a prefabricated frame strengthening by BRB is carried out by using software ANSYS to input the seismic wave. Then, the seismic behavior of this kind of frame is studied. It is observed that the seismic response of the retrofitted structures reduces significantly in comparison with the corresponding original structure without any retrofit measures.

2011 ◽  
Vol 243-249 ◽  
pp. 740-745 ◽  
Author(s):  
Qing Ning Li ◽  
Qing Mei Liu ◽  
Lin Zhao

A steel reinforced concrete frame-concrete core wall structure is taken as the research object in this paper. The whole space finite element models are established by software ETABS, modal analysis, response spectrum method and elastic time-history analysis are conducted. And static elastio-plastic time history analysis of the high-rise structure is conducted by software MIDAS/GEN. Seismic response of the high-rise structure is analyzed under medium earthquake and rare earthquake , elastic deformation is calculated under conventional earthquake and elastic-plastic deformation is calculated under rare earthquake. The results show that the structure can meet the requirements of no-damage under light earthquake, repairable under medium earthquake and no-collapse under strong earthquake.


2006 ◽  
Vol 33 (10) ◽  
pp. 1304-1319 ◽  
Author(s):  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Lan Lin ◽  
Kambiz Amiri-Hormozaki

Spectrum-compatible seismic excitations are required when dynamic time-history analysis is used for determining the response of a structure. This paper presents results from a study on the effects of different types of spectrum-compatible excitations on the response of medium-height reinforced concrete frame buildings. Two six-storey buildings designed for Vancouver and a five-storey building designed for Montréal were used in the study. Nonlinear time-history analyses were conducted by subjecting the buildings to selected ensembles of spectrum-compatible excitations (i.e., accelerograms). The ensembles used in the study included spectrum-compatible artificial accelerograms, simulated stochastic accelerograms, and recorded earthquake accelerograms (i.e., real accelerograms) scaled to the design spectrum ordinate at the fundamental building period and to the area under the design spectrum within the predominant period range of the building. The responses of the buildings resulting from spectrum-compatible artificial accelerograms and those from scaled real accelerograms were found to be quite similar. Based on the results of this study, the scaling of real accelerograms to spectral area is preferred for obtaining spectrum-compatible accelerograms.Key words: seismic, excitation, response, spectrum, accelerogram, building, drift, curvature, ductility.


2013 ◽  
Vol 40 (5) ◽  
pp. 411-426 ◽  
Author(s):  
Lan Lin ◽  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Simon Foo ◽  
Edmund Booth ◽  
...  

The selection of seismic motions is one of the most important issues for the time-history analysis of buildings. This paper discusses four different methods for obtaining spectrum-compatible acceleration time histories (i.e., accelerograms) of seismic motions. Based on these methods, four sets of accelerograms compatible with the design spectrum for Vancouver were selected for this study. These included (i) scaled real accelerograms, (ii) modified real accelerograms, (iii) simulated accelerograms, and (iv) artificial accelerograms. The selected sets were used as excitation motions in the nonlinear analysis of three reinforced concrete frame buildings designed for Vancouver. The buildings included a 4-storey, a 10-storey, and a 16-storey building, which can be considered representative of low-rise, medium-rise, and high-rise buildings, respectively. The storey shears, interstorey drifts, and curvature ductilities for beams and columns obtained from the analysis were used for the evaluation of the effects of the selected sets on the responses of the buildings. Based on the results from the analysis, scaled real accelerograms are recommended for use in time-history analysis of reinforced concrete frame buildings.


2011 ◽  
Vol 255-260 ◽  
pp. 2426-2433
Author(s):  
Hui Zhi Zhang ◽  
Xiu Qin Cui

For more reasonable and convenient evaluating structure seismic performance,static elasto-plastic analysis of reinforced concrete frame is presented by pushover with different lateral load distributing modes including uniform distribution, inverted triangle distribution and self-adaption distribution adopted, custom plastic hinge, bending moment-curvity relation and bending moment-axial force correlation of each member section are acquired by Response2000, and time history analysis is used to reinforced concrete frame. It is revealed that the presented method is easy and feasiable, and can generatee stable result.


2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


2016 ◽  
Vol 20 (7) ◽  
pp. 1125-1138 ◽  
Author(s):  
Jing Yu ◽  
Xiaojun Liu ◽  
Xingwen Liang

A new model that can simulate the behavior of construction joint subjected to seismic forces was proposed. Nonlinear time-history analysis was carried out for reinforced concrete regular frame structures designed in different seismic intensity regions as well as with different height-to-width ratios. Two kinds of numerical models are adopted to simulate the seismic behavior of each frame, one with construction joint using the new proposed model and the other without construction joint using the conventional model. Results show that the influence of construction joint on the seismic behavior of reinforced concrete frame is strongly related to structural nonlinearity. It may increase the top displacement and the inter-story drift, change the inter-story drift distributions, and exacerbated the local reaction of key members. The influence of construction joint cannot be ignored for structures with low emergency capacity against major earthquake. Seismic design suggestions are proposed from the aspect of calculation analysis method.


2010 ◽  
Vol 163-167 ◽  
pp. 4301-4308
Author(s):  
Min Sheng Guan ◽  
Da Jian Han ◽  
Hong Biao Du ◽  
Xin Wang

Earthquake input energy and structural energy dissipation are key indicators to assess the seismic performance of structures. To study the rules of distribution of hysteretic energy within structures, a 6-storey regular reinforced concrete frame structure model is analyzed through elasto-plastic time-history dynamic analysis using the El Centro and Northridge accelerograms. Based on the comparison between numerical results for the earthquake input energy and structural hysteretic energy under the minor, moderate and major earthquakes of Grade 8 and 9, the distribution of the ratio of the storey hysteretic energy to the total hysteretic energy through the height was further studied. It shows that the computed results corresponding to the two earthquake records are in good agreement under different ground motion severity. And the percentage of structural hysteretic energy to input energy is basically stable. The distribution pattern of storey hysteretic energy through the height is that the value of the upper stories is smaller than the value of the lower stories. And the ground motion severity has a minor influence on the distribution pattern when the plasticity of structure develops more sufficiently.


Author(s):  
L. M. Megget

The paper describes the dynamic and static analyses and design of a four storey ductile reinforced concrete frame structure isolated from the foundations by elastomeric bearings incorporating lead energy dampers. Results from inelastic, time-history analyses for the isolated and non-isolated structure are compared for several input earthquake motions. The benefits of energy dampers in reducing the isolated building's response (shears, plastic hinge demands and interstorey drifts) are detailed. Differences from conventional ductile design and detailing as well as design recommendations are included.


Author(s):  
D. G. Elms ◽  
D. Silvester

The appropriateness of the overall base shear levels prescribed by
 the New Zealand Loadings Code NZS4203:1976 is investigated for reinforced concrete frame buildings. Six-storey structures were designed to different base shear levels and total costs were computed: total cost takes account of capital cost, averaged direct economic loss due to earthquakes, and indirect earthquake losses. Damage levels were obtained from computer time-history analyses. It is shown that the code base shear levels are
 of the right order of magnitude for reinforced concrete frame buildings, but that the total cost of such buildings is insensitive to design
base shear level. The increase in capital cost of a concrete frame building due to earthquake design requirements is of the order of 4%.


Sign in / Sign up

Export Citation Format

Share Document