Research on the Basic Mechanical Properties of Fly Ash Fiber Reinforced Concrete

2011 ◽  
Vol 261-263 ◽  
pp. 8-12
Author(s):  
Shu Shan Li ◽  
Ming Xiao Jia ◽  
Dan Ying Gao

The basic mechanical properties of fly ash fiber concrete were tested. The influences to the compressive strength, splitting tensile strength and compressive modulus of elasticity of fiber concrete by water-cement ratio, dosage of fly ash and other factors were analyzed. The influence mechanism of fly ash to concrete is discussed. The results indicate that with the increase of the dosage of fly ash, the early strength of double-doped concrete is reduced, while the later strength of concrete was obviously increased.

2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2013 ◽  
Vol 795 ◽  
pp. 664-668 ◽  
Author(s):  
Roshasmawi Abdul Wahab ◽  
Mohd Noor Mazlee ◽  
Shamsul Baharin Jamaludin ◽  
Khairul Nizar Ismail

In this study, the mixing of polystyrene (PS) beads and fly ash as a sand replacement material in foamed cement composites (FCC) has been investigated. Specifically, the mechanical properties such as compressive strength and flexural strength were measured. Different proportions of fly ash were added in cement composites to replace the sand proportion at 3 wt. %, 6 wt. %, 9 wt. % and 12 wt. % respectively. The water to cement ratio was fixed at 0.65 meanwhile ratios of PS beads used was 0.25 volume percent of samples as a foaming agent. All samples at different mixed were cured at 7 and 28 days respectively. Based on the results of compressive strength, it was found that the compressive strength was increased with the increasing addition of fly ash. Meanwhile, flexural strength was decreased with the increasing addition of fly ash up to 9 wt. %. The foamed cement composites with 12 wt. % of fly ash produced the highest strength of compressive strength meanwhile 3 wt. % of fly ash produced the highest strength of flexural strength.


2010 ◽  
Vol 113-116 ◽  
pp. 1013-1016 ◽  
Author(s):  
Zhi Min He ◽  
You Jun Xie ◽  
Guang Cheng Long ◽  
Jun Zhe Liu

In precast concrete elements manufacturing, steam-cured concrete incorporating 30% fly ash encountered the problem of a too low demoulding compressive strength. To resolve it, this paper developed a new steam-cured concrete (AFSC) incorporating fly ash and a chemical activator. Experiments were conducted to investigate the mechanical properties of AFSC. The corresponding mechanism was also discussed by testing the microstructure of concrete. Results indicate that the demoulding compressive strength of AFSC can meet production requirements, and compressive and flexure strength of AFSC at later ages increase well. Compared with that of ordinary steam-cured concrete, AFSC has a higher tensile strength, and the capability of AFSC to resist cracks is enhanced remarkably. At an early age, addition of the chemical activator can distinctly accelerate the extent of hydration of the fly ash cement systems, and thus the microstructure of concrete becomes denser.


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


2021 ◽  
Vol 11 (17) ◽  
pp. 7926
Author(s):  
Qian Zhang ◽  
Wenqing Zhang ◽  
Yu Fang ◽  
Yongjie Xu ◽  
Xianwen Huang

In order to solve the problem of highly brittle shaft lining under dynamic loading, a combination of hybrid fiber concrete mixed with steel and polypropylene fiber is proposed to make shaft lining. C60, the concrete commonly used in shaft lining, was selected as the reference group. The static mechanical properties, dynamic mechanical properties, and crack failure characteristics of the hybrid fiber concrete were experimentally studied. The test results showed that compared to the reference group concrete, the compressive strength of the hybrid fiber-reinforced concrete did not significantly increase, but the splitting tensile strength increased by 60.4%. The split Hopkinson compression bar results showed that the optimal group peak stress and peak strain of the hybrid fiber concrete increased by 58.2% and 79.2%, respectively, and the dynamic toughness increased by 68.1%. The strain distribution before visible cracks was analyzed by the DIC technology. The results showed that the strain dispersion phenomenon of the fiber-reinforced concrete specimen was stronger than that of the reference group concrete. By comparing the crack failure forms of the specimens, it was found that compared to the reference group concrete, the fiber-reinforced concrete specimens showed the characteristics of continuous and slow ductile failure. The above results suggest that HFRC has significantly high dynamic splitting tensile strength and compressive deformation capacity, as well as a certain anti-disturbance effect. It is an excellent construction material for deep mines under complex working conditions.


2019 ◽  
Vol 21 (1) ◽  
pp. 50-56
Author(s):  
Indradi Wijatmiko ◽  
Ari Wibowo ◽  
Christin Remayanti Nainggolan

Fiber concrete containing fibrous materials is manufactured to improve the low tensile strength of concrete and its brittle properties. In this research, fiber obtained from PVC coated welded wire mesh with diameter of 1 mm was utilized. There were several variations of fiber concrete samples made. Samples were subjected to tensile and compressive strength tests. The elastic modulus was measured by using extensometer and strain-stress gauges. The results show that the incorporation of PVC coated welded wire mesh increases the tensile strength of concrete, when the percentage of the fiber is 1.5%, with the length of 3.6cm, and the interlocking of 1.2cm. However, the compressive strength is slightly reduced from the normal ones. The elastic modulus results show that the introduction of PVC coated welded wire mesh tends to reduce the flexibility, as the value reduced 15-50% as compared to the normal ones without any fiber


Author(s):  
Sajid Mehmood ◽  
Faheem Butt

This study investigated the effects of steel fibers on the fresh and hardened properties, and heat of hydration of concrete containing FA (Fly Ash). A total of 192 samples were cast comprising cubes, cylinders, and prisms, for six concrete mixes with varying contents of steel fibers by volume and a fixed content of FA i.e. 15% by weight of cement. The semi adiabatic setup was used to monitor temperature rise due to the heat of hydration in the concrete mixes for fourteen days. The use of FA increased workability, and decreased early compressive strength, tensile strength and heat of hydration of concrete. However, an increase in the compressive strength of FA concrete was observed by the addition of steel fibers up to 0.9% whereas a consistent increase in the splitting tensile strength and modulus of rupture was observed with the addition of the steel fibers from 0.4-1.8%. Further the test results showed that increasing steel fibers content decrease the evolution of heat due to hydration. It was concluded that the FA concrete with steel fibers can be used in precast industry and mass construction projects due to the improved mechanical properties and lower heat of hydration.


2021 ◽  
Vol 30 (3) ◽  
pp. 464-476
Author(s):  
Haider Owaid ◽  
Haider Al-Baghdadi ◽  
Muna Al-Rubaye

Large quantities of paper and wood waste are generated every day, the disposal of these waste products is a problem because it requires huge space for their disposal. The possibility of using these wastes can mitigate the environmental problems related to them. This study presents an investigation on the feasibility of inclusion of waste paper ash (WPA) or wood ash (WA) as replacement materials for fly ash (FA) class F in preparation geopolymer concrete (GC). The developed geopolymer concretes for this study were prepared at replacement ratios of FA by WPA or WA of 25, 50, 75 and 100% in addition to a control mix containing 100% of FA. Sodium hydroxide (NaOH) solutions and sodium silicate (Na2SiO3) are used as alkaline activators with 1M and 10M of sodium hydroxide solution.The geopolymer concretes have been evaluated with respect to the workability, the compressive strength, splitting tensile strength and flexural strength. The results indicated that there were no significant differences in the workability of the control GC mix and the developed GC mixes incorporating WPA or WA. Also, the results showed that, by incorporating of 25–50% PWA or 25% WA, the mechanical properties (compressive strength, splitting tensile strength and flexural strength) of GC mixes slightly decreased. While replacement with 75–100% WPA or with 50–100% WA has reduced these mechanical properties of GC mixes. As a result, there is a feasibility of partial replacement of FA by up to 50% WPA or 25% WA in preparation of the geopolymer concrete.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 262
Author(s):  
Shelorkar A.P ◽  
Jadhao P.D

This paper reports on a wide-ranging study on the properties of slurry infiltrated fiber concrete containing fly ash, Metakaolin, and hook ended steel fibers. Properties studied include workability of fresh slurry infiltrated fiber concrete, and compressive strength, flexural tensile strength, splitting tensile strength, dynamic elasticity modulus, impact energy of hardened slurry infiltrated fiber concrete. Fly ash and Metakaolin content used was 0%, 2.5%, 5.0%, 7.5% and 10% in mass basis, and hook ended steel fibers volume fraction was 0%, 2.0%, 3.0% and 4.0% in volume basis. The laboratory results showed that steel fiber addition, either into control concrete or fly ash, Metakaolin blend slurry infiltrated fiber concrete; improve the tensile strength properties, flexural strength, impact energy and modulus of elasticity. In this experimental study, compressive strength improvement ratio is 33.60%, and Structural efficiency is 9.50 % higher in slurry infiltrated fiber-concrete with Metakaolin as compared with fly ash based slurry infiltrated fiber concrete at the 4% replacement ratio of hook ended steel fibers by volume.  


Sign in / Sign up

Export Citation Format

Share Document