scholarly journals Determination of Mechanical Properties of Slurry Infiltrated Steel Fiber Concrete Using Fly Ash and Metakaolin

2018 ◽  
Vol 7 (4.5) ◽  
pp. 262
Author(s):  
Shelorkar A.P ◽  
Jadhao P.D

This paper reports on a wide-ranging study on the properties of slurry infiltrated fiber concrete containing fly ash, Metakaolin, and hook ended steel fibers. Properties studied include workability of fresh slurry infiltrated fiber concrete, and compressive strength, flexural tensile strength, splitting tensile strength, dynamic elasticity modulus, impact energy of hardened slurry infiltrated fiber concrete. Fly ash and Metakaolin content used was 0%, 2.5%, 5.0%, 7.5% and 10% in mass basis, and hook ended steel fibers volume fraction was 0%, 2.0%, 3.0% and 4.0% in volume basis. The laboratory results showed that steel fiber addition, either into control concrete or fly ash, Metakaolin blend slurry infiltrated fiber concrete; improve the tensile strength properties, flexural strength, impact energy and modulus of elasticity. In this experimental study, compressive strength improvement ratio is 33.60%, and Structural efficiency is 9.50 % higher in slurry infiltrated fiber-concrete with Metakaolin as compared with fly ash based slurry infiltrated fiber concrete at the 4% replacement ratio of hook ended steel fibers by volume.  

2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


2013 ◽  
Vol 438-439 ◽  
pp. 290-294 ◽  
Author(s):  
Hong Yuan Huo ◽  
Li Sha Song ◽  
Li Sun ◽  
Chen Jie Cao

Test of basic properties of steel fiber reinforced concrete (SFRC) was carried out to further study the validity of the binary superposition mix proportion method. The strength grades of SFRC were CF40, CF50 and CF60. The key parameters of the study were the fraction of steel fiber by volume, the thickness of cement paste wrapping steel fibers and the water to cement ratio. The workability of fresh SFRC was measured firstly to satisfy the construction requirement. The compressive strength, tensile strength and flexural-tensile strength of SFRC were tested simultaneously. Based on the test data, the changes of above basic properties of SFRC are analyzed in view of the effects of the fraction of steel fiber by volume and the thickness of cement paste wrapping steel fibers. It shows that the optimum thickness of cement past wrapping steel fibers is 0.8mm. The influencing coefficients in formulas for calculating tensile strength and flexural-tensile strength of SFRC specified in the current technical specification are given out.


2011 ◽  
Vol 261-263 ◽  
pp. 8-12
Author(s):  
Shu Shan Li ◽  
Ming Xiao Jia ◽  
Dan Ying Gao

The basic mechanical properties of fly ash fiber concrete were tested. The influences to the compressive strength, splitting tensile strength and compressive modulus of elasticity of fiber concrete by water-cement ratio, dosage of fly ash and other factors were analyzed. The influence mechanism of fly ash to concrete is discussed. The results indicate that with the increase of the dosage of fly ash, the early strength of double-doped concrete is reduced, while the later strength of concrete was obviously increased.


2015 ◽  
Vol 659 ◽  
pp. 143-148 ◽  
Author(s):  
Rachamongkon Wongruk ◽  
Smith Songpiriyakij ◽  
Piti Sukontasukkul ◽  
Prinya Chindaprasirt

In this study, the mechanical properties of steel fibre reinforced geopolymer (SFRG) are investigated. The geopolymer is consisted of fly ash, silica fume and activator solution, sodium silicate and sodium hydroxide. Five mix proportions of fly ash and silica fume are varied to study the effect of fly ash/silica fume ratios (FA/SF). This experimental series focus mainly on flexural strength and flexural toughness performance of SFRG. Hooked-ends steel fibers are used at 0.5% and 1% by volume fractions. The experiment is carried out based on ASTM C1609 (beam specimens) for flexural performance. The results showed that fibre can significantly enhance the both flexural strength and toughness of geopolymer. The enhancement also increases with the increasing fibre volume fraction.


2018 ◽  
Vol 162 ◽  
pp. 04008
Author(s):  
Ikbal Gorgis ◽  
Waleed Abbas ◽  
Nadia Moneen

Tensile plate specimens with dimension of 450×100×40mm were cast with 3D glass fabric having three different thicknesses 6, 10 and 15mm to measure their tensile strength. Plates with one and two layers of chicken wires, as well as micro steel fiber of 0.75% volume fraction were tested under tensile for comparison with references plates. Cement mortar with 61.2MPa cube compressive strength at 28 days was designed for casing the plates. The results indicated that after cracking of the mortar the textile reinforcement adds a strain hardening trajectory, that cause failure to occurs at slightly higher load and a higher strain. The improvement in tensile strength at 28 days ranged between 5 to 30%, and for 90 days between 5 to 60% for the three types of fibres used. Based on the results a significant increase was indicated with micro steel fiber.


Author(s):  
Sajid Mehmood ◽  
Faheem Butt

This study investigated the effects of steel fibers on the fresh and hardened properties, and heat of hydration of concrete containing FA (Fly Ash). A total of 192 samples were cast comprising cubes, cylinders, and prisms, for six concrete mixes with varying contents of steel fibers by volume and a fixed content of FA i.e. 15% by weight of cement. The semi adiabatic setup was used to monitor temperature rise due to the heat of hydration in the concrete mixes for fourteen days. The use of FA increased workability, and decreased early compressive strength, tensile strength and heat of hydration of concrete. However, an increase in the compressive strength of FA concrete was observed by the addition of steel fibers up to 0.9% whereas a consistent increase in the splitting tensile strength and modulus of rupture was observed with the addition of the steel fibers from 0.4-1.8%. Further the test results showed that increasing steel fibers content decrease the evolution of heat due to hydration. It was concluded that the FA concrete with steel fibers can be used in precast industry and mass construction projects due to the improved mechanical properties and lower heat of hydration.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6890
Author(s):  
Muhammad Ibraheem ◽  
Faheem Butt ◽  
Rana Muhammad Waqas ◽  
Khadim Hussain ◽  
Rana Faisal Tufail ◽  
...  

The purpose of this research is to study the effects of quarry rock dust (QRD) and steel fibers (SF) inclusion on the fresh, mechanical, and microstructural properties of fly ash (FA) and ground granulated blast furnace slag (SG)-based geopolymer concrete (GPC) exposed to elevated temperatures. Such types of ternary mixes were prepared by blending waste materials from different industries, including QRD, SG, and FA, with alkaline activator solutions. The multiphysical models show that the inclusion of steel fibers and binders can enhance the mechanical properties of GPC. In this study, a total of 18 different mix proportions were designed with different proportions of QRD (0%, 5%, 10%, 15%, and 20%) and steel fibers (0.75% and 1.5%). The slag was replaced by different proportions of QRD in fly ash, and SG-based GPC mixes to study the effect of QRD incorporation. The mechanical properties of specimens, i.e., compressive strength, splitting tensile strength, and flexural strength, were determined by testing cubes, cylinders, and prisms, respectively, at different ages (7, 28, and 56 days). The specimens were also heated up to 800 °C to evaluate the resistance of specimens to elevated temperature in terms of residual compressive strength and weight loss. The test results showed that the mechanical strength of GPC mixes (without steel fibers) increased by 6–11%, with an increase in QRD content up to 15% at the age of 28 days. In contrast, more than 15% of QRD contents resulted in decreasing the mechanical strength properties. Incorporating steel fibers in a fraction of 0.75% by volume increased the compressive, tensile, and flexural strength of GPC mixes by 15%, 23%, and 34%, respectively. However, further addition of steel fibers at 1.5% by volume lowered the mechanical strength properties. The optimal mixture of QRD incorporated FA-SG-based GPC (QFS-GPC) was observed with 15% QRD and 0.75% steel fibers contents considering the performance in workability and mechanical properties. The results also showed that under elevated temperatures up to 800 °C, the weight loss of QFS-GPC specimens persistently increased with a consistent decrease in the residual compressive strength for increasing QRD content and temperature. Furthermore, the microstructure characterization of QRD blended GPC mixes were also carried out by performing scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS).


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


2021 ◽  
Vol 60 (1) ◽  
pp. 578-590
Author(s):  
Zhong Xu ◽  
Zhenpu Huang ◽  
Changjiang Liu ◽  
Xiaowei Deng ◽  
David Hui ◽  
...  

Abstract Geopolymer cementitious materials and recycled aggregate are typical representatives of material innovation research in the engineering field. In this study, we experimentally investigated a method to improve the performance of geopolymer-recycled aggregate concrete (GRAC). The recycled concrete aggregates and steel fiber (SF), fly ash (FA), metakaolin (MK), and sodium silicate solution were used as the main raw materials to prepare fiber-reinforced geopolymer-recycled aggregate concrete (FRGRAC). First, the orthogonal test was carried out to study the GRAC, and the optimal mix proportion was found. Second, building on the optimal mix proportion, the effects of the SF content on the slump, 7 and 28 days compressive strength, tensile strength, and flexural strength of FRGRAC were further studied. Finally, the microscopic mechanism of FRGRAC was studied by scanning electron microscopy (SEM). The study results indicate that the slump continues to decrease as the fiber content increases, but the compressive strength, tensile strength, and flexural strength increase to a certain extent. Through SEM analysis, it is found that SF restrains the development of cracks and improves the strength of concrete.


2021 ◽  
Vol 871 ◽  
pp. 330-339
Author(s):  
Fang Hua Li

Self-compacting steel fiber concrete must meet the strength standard after steel fiber is added and must have good fluidity. The test results show that the addition of steel fiber to concrete will affect the fluidity of concrete. Compared with ordinary concrete, the addition of steel fiber will improve the compressive strength and flexural tensile strength of concrete to varying degrees. The mix proportion test can be carried out in stages, i.e. the mix proportion meeting all performance indexes used is determined first, then steel fiber is added and adjusted to determine the best mix proportion.


Sign in / Sign up

Export Citation Format

Share Document