Additive-Coated Si3N4 Powder Prepared By The Sol-Gel Method

1994 ◽  
Vol 346 ◽  
Author(s):  
Manzheng Ge ◽  
Honghua Kan ◽  
Hui Yang ◽  
Jianmin Qiao ◽  
Zhonghua Jiang

ABSTRACTThe Y2O3-La2O3 additive-coated Si3N4 powders of about 1.5 μm in size were prepared by the sol-gel method. X-ray diffraction, X-ray photoelectron spectroscopy, differential thermal analysis, thermogravimetric analysis, electron microscopies, and particle size analysis were used to study the coating on the Si3N4 particles. The results show that properties of the bulk Si3N4 powder are not affected by using the sol-gel coating and the powders are homogeneously coated by a thin layer of the Y2O3-La2O3 additives. The structure of the Y2O3-La2O3 coating layer is amorphous or microcrystalline with a submicron thickness. The coated powders are then more sinterable, and the mechanical properties of the ceramics prepared from such powders are improved.

2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


Author(s):  
Julie Joseane Murcia Mesa ◽  
Ceidy Geraldine Patiño Castillo ◽  
Hugo Alfonso Rojas Sarmiento ◽  
José Antonio Navío Santos ◽  
María del Carmen Hidalgo López ◽  
...  

The aim of the present work was to evaluate the effectiveness of a heterogeneous photocatalyst based on TiO2 in the treatment of coal mining drainage which contains a variety of heavy metals and high concentration sulfates and sulfides. The photocatalytic behavior of the commercial reference Sigma Aldrich and the different materials synthesized using the Sol-gel methodology with surface modifications using sulfation and fluorination processes were analyzed. To find a possible correlation between the physicochemical properties of photocatalysts and their behavior, a characterization was carried out using X-Ray Diffraction (XRD), X-Ray Fluorescence spectrometry (XRF), Fourier transform infrared spectroscopy (FT–IR), UV–Vis diffuse reflectance Spectra (UV-Vis DRS), N2 physisorption, X-ray photoelectron spectroscopy (XPS), and particle size analysis. Results indicated that the modification of the TiO₂ prepared in the laboratory using sulfation and fluorination allowed the successful control of the physicochemical properties of this oxide. However, commercial TiO2 showed the greatest effectiveness in removing metals such as: Fe, Cu, Cr, and As after a photocatalytic reaction for a maximum of 1 hour under continuous nitrogen flow and a light intensity of 120 W/m2.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2986 ◽  
Author(s):  
Catalin Negrila ◽  
Mihai Predoi ◽  
Simona Iconaru ◽  
Daniela Predoi

Zinc- (Zn) doped hydroxyapatite (HAp) were prepared by sol-gel method. Zinc-doped hydroxyapatite (ZnHAp) and HAp were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Rietveld analysis revealed that the HAp and 7ZnHAp powders obtained by sol-gel method have a monophasic hydroxyapatite structure belonging to the P63/m spatial group. The results obtained from the ultrasound characterization of HAp and ZnHAp are also presented in this study. The effect of zinc concentration on properties that were deduced from ultrasonic measurements are studied in the case of a significant zinc concentration (xZn = 0.07). From the values of the ultrasonic waves velocities were determined by the pairs of elastic coefficients of the suspensions (Young modulus E, Poisson coefficient ν), which have proven to be similar to those determined by other authors.


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750013 ◽  
Author(s):  
Bo He ◽  
Jing Xu ◽  
HuanPo Ning ◽  
Lei Zhao ◽  
HuaiZhong Xing ◽  
...  

The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol–gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol–gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012004
Author(s):  
Duha S. Ahmed ◽  
Noor Q. Ali ◽  
Ali A. Taha

Abstract In this paper, we reported the synthesis of NiO NPs and Mg doped-NiO NPs using the facile sol-gel method. Besides, the influence of the variation of Mg dopant on the structural, morphological and optical properties of the prepared Mg-NiO NPs was studied. The synthesized Mg-NiO NPs nanoparticles were characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectrophotometer. The X-ray diffraction confirmed the formation of the cubic structure of Mg doped-NiO NPs after doping with the magnesium. The increase in the crystal size was observed with the increase in the concentration of the Mg dopant element. The FESEM images reveal the formation of nickel oxide through the appearance of spherical clusters, while the hybrids appear as wrinkled surface covered with spherical particles of magnesium. The UV-Vis spectrum showed a shift towards shorter wavelengths with an increase in the concentration of the Mg dopant element due to the quantum confinement effect. The hemolysis activity study showed that NiO NPs had a low hemolysis percentage of 1.47% and increased with increasing concentration. While, increasing of the RBC hemolysis (5.9%) after NiO doped with Mg. The antibacterial activity was studied against S. aureus and P. aeruginosa bacteria, and indicated the highest growth inhibition zones of Mg-doped NiO NPs as compared with NiO NPs against of Staphylococcus aureus and Pseudomonas aeruginosa, respectively.


2009 ◽  
Vol 66 ◽  
pp. 167-170 ◽  
Author(s):  
Zhen Zhong Zhang ◽  
Ji Hong Zhang ◽  
Wei Zhou ◽  
Ming Xia Song ◽  
Wei Li ◽  
...  

Er3+/Yb3+ co-doped TiO2 nanocrystals were prepared by Sol-gel method in which titanium tetrachloride was adopted as the precursor. The structure, particle size, and optical properties of samples were characterized by X-ray diffraction(XRD), Field emission-Scanning Electron Microscopy(FE-SEM) and photoluminescence(PL) spectra. Er3+ concentration was fixed at 1.0mol%, and Yb3+ concentration was changed from 3 to 10mol%. Intense upconversion luminescence was observed when the samples were excited by 980nm laser. The dependence of upconversion luminescence on Yb3+ concentration was presented. The results show that the upconversion luminescence increases with the Yb3+ concentration and gets its peak at 5%. The ratio of red emission to green emission(R/G) was strikingly enhanced with the increase of Yb3+ concentration. Under the excitation of 980nm, the green emission in the range of 520-570nm (2H11/2, 4S3/2→4I15/2) and the red emission in the range of 640~690nm (4F9/2 →4I15/2) are both due to two photons process. The possible upconversion mechanism was discussed.


Sign in / Sign up

Export Citation Format

Share Document