Inhibitory Effect of Tetrandrine on the Proliferation of Human Dermal Fibroblasts Derived from Hypertrophic Scars

2011 ◽  
Vol 268-270 ◽  
pp. 838-840
Author(s):  
De Wu Liu ◽  
Xiang Hu ◽  
De Ming Liu ◽  
Ping Zou

Tetrandrine can inhibit the proliferation and collagen synthesis of fibroblasts in lung and liver tissue confirmed by a series of clinical research. In this chapter, we investigated the effect of Tetrandrine on the proliferation of human dermal fibroblasts derived from hypertrophic scars. The dermal fibroblasts were isolated from human hypertrophic scar tissues and cultured in vitro. Tetrandrine with different concentration were added to culture medium respectively. The proliferative activities were determined. The result show that when the concentration of added Tetrandrine increased from 5μg/ml to 80μg/ml, the proliferative activities of cultured dermal fibroblasts were decreased gradually in dose-dependent manner. It conclusions that Tetrandrine can obviously inhibit the proliferation of human dermal fibroblasts derived from hypertrophic scars.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1156
Author(s):  
Madelaine Sugasti-Salazar ◽  
Yessica Y. Llamas-González ◽  
Dalkiria Campos ◽  
José González-Santamaría

Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


Marine Drugs ◽  
2018 ◽  
Vol 16 (7) ◽  
pp. 239 ◽  
Author(s):  
Lei Wang ◽  
WonWoo Lee ◽  
Jae Oh ◽  
Yong Cui ◽  
BoMi Ryu ◽  
...  

Our previous study evaluated the antioxidant activities of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) in vitro in Vero cells and in vivo in zebrafish. The results showed that HFPS possesses strong antioxidant activity and suggested the potential photo-protective activities of HFPS. Hence, in the present study, we investigated the protective effects of HFPS against ultraviolet (UV) B-induced skin damage in vitro in human dermal fibroblasts (HDF cells). The results indicate that HFPS significantly reduced intracellular reactive oxygen species (ROS) level and improved the viability of UVB-irradiated HDF cells in a dose-dependent manner. Furthermore, HFPS significantly inhibited intracellular collagenase and elastase activities, remarkably protected collagen synthesis, and reduced matrix metalloproteinases (MMPs) expression by regulating nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in UVB-irradiated HDF cells. These results suggest that HFPS possesses strong UV protective effect, and can be a potential ingredient in the pharmaceutical and cosmetic industries.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Liu ◽  
Ping Chen ◽  
Xiaojun Du ◽  
Junxia Sun ◽  
Shasha Han

Abstract Background Obtusofolin is the major active ingredient of Catsia tora L., which possesses the activity of improving eyesight and protecting the optic nerve. Investigation on the interaction of obtusofolin with cytochrome P450 enzymes (CYP450s) could provide a reference for the clinical application of obtusofolin. Methods The effect of obtusofolin on the activity of CYP450s was investigated in the presence of 100 μM obtusofolin in pooled human liver microsomes (HLMs) and fitted with the Lineweaver–Burk plots to characterize the specific inhibition model and kinetic parameters. Results Obtusofolin was found to significantly inhibited the activity of CYP3A4, 2C9, and 2E1. In the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM obtusofolin, the inhibition of these CYP450s showed a dose-dependent manner with the IC50 values of 17.1 ± 0.25, 10.8 ± 0.13, and 15.5 ± 0.16 μM, respectively. The inhibition of CYP3A4 was best fitted with the non-competitive inhibition model with the Ki value of 8.82 μM. While the inhibition of CYP2C9 and 2E1 was competitive with the Ki values of 5.54 and 7.79 μM, respectively. After incubating for 0, 5, 10, 15, and 30 min, the inhibition of CYP3A4 was revealed to be time-dependent with the KI value of 4.87 μM− 1 and the Kinact value of 0.0515 min− 1. Conclusions The in vitro inhibitory effect of obtusofolin implying the potential drug-drug interaction between obtusofolin and corresponding substrates, which needs further in vivo validations.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Serban Iren Andreea ◽  
Costache Marieta ◽  
Dinischiotu Anca

In the dermis, fibroblasts play an important role in the turnover of the dermal extracellular matrix. Collagen I and III, the most important dermal proteins of the extracellular matrix, are progressively altered during ageing and diabetes. For mimicking diabetic conditions, the cultured human dermal fibroblasts were incubated with increasing amounts of AGE-modified BSA andD-glucose for 24 hours. The expression of procollagenα2(I) and procollagenα1(III) mRNA was analyzed by quantitative real-time PCR. Our data revealed that the treatment of fibroblasts with AGE-modified BSA upregulated the expression of procollagenα2(I) and procollagenα1(III) mRNA in a dose-dependent manner. High glucose levels mildly induced a profibrogenic pattern, increasing the procollagenα2(I) mRNA expression whereas there was a downregulation tendency of procollagenα1(III) mRNA.


1999 ◽  
Vol 277 (3) ◽  
pp. L543-L549 ◽  
Author(s):  
Etsuro Sato ◽  
Keith L. Simpson ◽  
Matthew B. Grisham ◽  
Sekiya Koyama ◽  
Richard A. Robbins

Peroxynitrite, an oxidant generated by the interaction between superoxide and nitric oxide (NO), can nitrate tyrosine residues, resulting in compromised protein function. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that attracts monocytes and has a tyrosine residue critical for function. We hypothesized that peroxynitrite would alter MCP-1 activity. Peroxynitrite attenuated MCP-1-induced monocyte chemotactic activity (MCA) in a dose-dependent manner ( P < 0.05) but did not attenuate leukotriene B4 or complement-activated serum MCA. The reducing agents dithionite, deferoxamine, and dithiothreitol reversed the MCA inhibition by peroxynitrite, and exogenous l-tyrosine abrogated the inhibition by peroxynitrite. PAPA-NONOate, an NO donor, or superoxide generated by xanthine and xanthine oxidase did not show an inhibitory effect on MCA induced by MCP-1. The peroxynitrite generator 3-morpholinosydnonimine caused a concentration-dependent inhibition of MCA by MCP-1. Peroxynitrite reduced MCP-1 binding to monocytes and resulted in nitrotyrosine formation. These findings are consistent with nitration of tyrosine by peroxynitrite, with subsequent inhibition of MCP-1 binding to monocytes, and suggest that peroxynitrite may play a role in regulation of MCP-1-induced monocyte chemotaxis.


1984 ◽  
Vol 105 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Preben Holme Jørgensen ◽  
lb Bo Lumholtz ◽  
Jens Faber ◽  
Carsten Kirkegaard ◽  
Kaj Siersbæk-Nielsen ◽  
...  

Abstract. The in vitro effect of d,l-4-hydroxypropranolol, a major pharmacological active metabolite of the beta adrenoceptor blocking drug d,l-propranolol, on the thyroxine (T4) to 3,5,3'-triiodothyronine (T3) conversion has been studied using rat renal and liver microsomal fractions. The results showed, that primarily the metabolite, but also the parent drug inhibits the T3-production in a dose dependent manner. The potency, expressed as the 50% inhibition of the T3-production, was reached using 65 ± 12 (sd) μm d,l-4-OH-propranolol and 1000 ± 22 (sd) μm d,l-propranolol, respectively in both tissues. The efficacy of 4-OH-propranolol corresponded to a maximal inhibition of 86 ± 7% while it for d,l-propranolol corresponded to 58 ± 6% (P < 0.001). The beta adrenoceptor agonist isoprenaline itself did not effect the T4 to T3 conversion but considerably opposed the inhibitory effect of d,l-4-OH-propranolol but not of d,l-propranolol. The D-isomer form of propranolol, which is without beta receptor blocking activity inhibited the T3-production in the same degree as d,l-propranolol. Evaluation of the enzyme kinetic data suggested that 4-OH-propranolol caused a competitive inhibition of both T4 and DTT. It is concluded, that the metabolite d,l-4-OH-propranolol is a much more potent and efficacious inhibitor of the T4-5'-deiodination than d,l-propranolol.


Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 911-915 ◽  
Author(s):  
RT Jr Means ◽  
SB Krantz ◽  
J Luna ◽  
SA Marsters ◽  
A Ashkenazi

It has been previously reported that inhibition of human erythroid colony-forming units (CFU-E) in vitro by interleukin-1 (IL-1) is an indirect effect, occurring through the production of interferon gamma (IFN gamma). IFN gamma, in turn, inhibits CFU-E colony formation directly, and its inhibitory effect can be overcome by exposure to high concentrations of erythropoietin (EPO). To develop an in vitro animal model for investigating inhibition of erythropoiesis by IFN gamma, the effects of recombinant murine (rm) IFN gamma on highly purified CFU-E from the spleens of mice infected with the anemia strain of the Friend virus (FVA) were studied. rmIFN gamma inhibited CFU-E colony formation in a dose-dependent manner. This inhibition occurred with large (> or = 8 cell) colonies only; smaller colonies were not affected. The inhibitory effect was corrected to 72% of control by high EPO concentrations of 64 U/mL. Murine CFU-E were then cultured with rmIFN gamma in the presence of a soluble murine IFN gamma receptor fused to the hinge and Fc domains of the human IgG1 heavy chain (mIFN gamma R-IgG). Inhibition of CFU-E colony formation by rmIFN gamma (100 U/mL) was corrected by mIFN gamma R-IgG in a dose-dependent manner, with an approximate IC50 of 0.05 nmol/L, and complete or near complete correction at 0.5 nmol/L. Similarly, a human IFN gamma R-IgG greatly reduced the inhibitory effect of recombinant human IFN gamma on human CFU-E. These experiments provide an in vitro animal model for studying the inhibitory effects of IFN gamma on erythropoiesis and indicate that IFN gamma R-IgG may be a useful agent for reducing the toxicity of IFN gamma in vivo.


Sign in / Sign up

Export Citation Format

Share Document