Preparation of Ag Nanoparticles by Particulate Radiation of Pulsed Electron Beam

2011 ◽  
Vol 287-290 ◽  
pp. 338-342
Author(s):  
Young Rang Uhm ◽  
Chang Kyu Rhee ◽  
Sergei Sokovnin ◽  
M.E Balezin

Nano metal Ag nanoparticles were synthesized by pulse electron beam (e-beam) irradiation at room temperature and the atmospheric pressure. The staring materials were AgNO3, toluene, ethanol and ethylene glycol. The ethanol and ethylene glycol plays a role of prohibiting agglomeration of metal ions. Energy dispersive X-ray spectrometer (EDX) was used to characterize the elements. Transmission electron microscopy (TEM) images were used to determine the shape and diameter. The time of e-beam irradiation affect to the particle size and aggregation. The average particle size was 10 nm and 30 nm for the dose time of 1 and 5 min, respectively. The shape of particles were changed from spherical to disk-like to coral-like, with increasing the irradiation time from 1 to 5 to 10 min.

2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dinesh Patidar ◽  
Anusaiya Kaswan ◽  
N. S. Saxena ◽  
Kananbala Sharma

Monodispersed ZnO nanoparticles have been synthesised in ethylene glycol medium using zinc acetate and sodium hydroxide at room temperature through ultrasonic treatment. The monodispersed ZnO nanoparticles were characterized by XRD, TEM, SEM, and optical spectroscopy. The results indicate that ZnO shows the hexagonal wurtzite structure having 8 nm average particle size with the band gap of 3.93 eV. ZnO nanoparticles blended with P3HT show the improvement in the interchains and intrachains ordering as compared to pure P3HT. The power conversion efficiency of P3HT/ZnO solar cell is found to be 0.88%, which is comparable with the result obtained by other researchers.


2004 ◽  
Vol 19 (4) ◽  
pp. 1087-1092 ◽  
Author(s):  
Naofumi Uekawa ◽  
Masayuki Ueta ◽  
Yong Jun Wu ◽  
Kazuyuki Kakegawa

Cerium oxide (CeO2) nanoparticles were obtained by heating a polyethylene glycol (PEG) solution of cerium nitrate hydrate [Ce(NO3)3 6H2O] at 383 K for 3 h. When the PEG, whose molecular weight was 20,000, was used for the preparation, the monodispersed CeO2, whose particle size was about 102 nm, was obtained. When the mixture of PEG20,000 and ethylene glycol (EG) was used to prepare the PEG solution of cerium nitrate hydrate, the average particle size increased from 102 nm to 660 nm with an increase in the EG content of the solution. The pore structure in the obtained CeO2 particles also depended on the weight ratio between EG and PEG20,000.


2008 ◽  
Vol 8 (7) ◽  
pp. 3516-3525 ◽  
Author(s):  
Alojz Anžlovar ◽  
Zorica Crnjak Orel ◽  
Majda Žigon

Cu nanoparticles were prepared in di(ethylene glycol) by a reduction reaction of Cu (II) acetate precursor to metallic Cu. The size and morphology of the synthesized particles were studied in dependence of the concentration of the starting compound and the temperature conditions of reaction were varied to determine the correlation with the size and morphology of the synthesized particles. The morphology and size of the resulting copper (I) oxide as an intermediate product and metallic Cu particles as a final product are strongly dependent on the concentration of the starting compound, thus indicating differences in the mechanism of the reduction reaction and, consequently, the mechanism of particle formation. At low concentrations (0.01 and 0.1 mol/L), an organo-metallic copper complex intermediate forms crystalline 10–100 nm thick and up to 10 μm long nanowires organized in dendritic spheres with a diameter of 5–50 μm, which further transform into Cu2O. Cu-di(ethylene glycolate) complex has an as yet undescribed crystalline structure. At a high precursor concentration (1 mol/L), the intermediate forms partly amorphous and partly crystalline Cu2O. The reduction of Cu2O to metallic Cu takes place between 190–200 °C. The smallest average particle size (100 nm) and the narrowest particle size distribution was obtained at a Cu (II) acetate concentration of 0.1 mol/L.


2009 ◽  
Vol 13 (07) ◽  
pp. 779-786 ◽  
Author(s):  
Byeong Uk Jang ◽  
Jae Hong Choi ◽  
Sung Jun Lee ◽  
Se Geun Lee

TiO2 sol was prepared by a sol-gel method. Sodium polymethacrylate (PMAA) was added to TiO2 sol, resulting in a stable TiO2-PMAA . The copper(II) phthalocyanine tetrasulfonate ( CuPcTs ) was used to sensitize nanocrystalline TiO2 photocatalyst. The hybrid nanoparticles had an average particle size of 35 nm and core-shell type morphology was observed using a TEM. For the preparation of TiO2-CuPcTs , TiO2 was directly complexed with CuPcTs , leading to a particle size of 100 nm by a sonication treatment. The photodegradation of the hybrid type photosensitizer was measured using AO7 as an indicator with He-Ne laser with wavelength 633 nm. The efficiency of singlet oxygen generation was also measured by the reduction ratio of concentration of trans-1-(2′-methoxyvinyl) pyrene (MVP) responding to the change of fluorescene emission at 420 nm, depending on the irradiation time.


2017 ◽  
Vol 62 (2) ◽  
pp. 999-1004 ◽  
Author(s):  
Hyo-Seob Kim ◽  
Fikret Yilmaz ◽  
Peyala Dharmaiah ◽  
Dong-Jin Lee ◽  
Tae-Haeng Lee ◽  
...  

AbstractIn the present work, Cu and Ni nanofluids were synthesized using the pulsed wire evaporation (PWE) method in the different aqueous medias, namely (ethanol and ethylene glycol), and the effects of the aqueous media on the dispersion state, stability, and particle size of nanoparticles were studied. The size and morphology of synthesized nano-particles were investigated by transmission electron microscopy (TEM). Also, the dispersion stability of the nanofluids was evaluated by turbiscan analysis. The TEM results showed that the nano-particles were spherical in shape, and the average particle size was below 100 nm. The average particle size of the Cu nano-particles was smaller than that of Ni, which was attributed to a difference in the specific sublimation energy of the elements. Moreover, ethylene glycol (EG) exhibited higher suspension stability than ethanol. Finally, the dispersion stability of Cu@EG displayed the highest value due to lower particle size and greater viscosity.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1461
Author(s):  
Nikolay N. Koval ◽  
Tamara V. Koval ◽  
Olga V. Krysina ◽  
Yurii F. Ivanov ◽  
Anton D. Teresov ◽  
...  

This paper presents a study of a combined modification of silumin, which included deposition of a ZrN coating on a silumin substrate and subsequent treatment of the coating/substrate system with a submillisecond pulsed electron beam. The local temperature on the samples in the electron-beam-affected zone and the thickness of the melt zone were measured experimentally and calculated using a theoretical model. The Stefan problem was solved numerically for the fast heating of bare and ZrN-coated silumin under intense electron beam irradiation. Time variations of the temperature field, the position of the crystallization front, and the speed of the front movement have been calculated. It was found that when the coating thickness was increased from 0.5 to 2 μm, the surface temperature of the samples increased from 760 to 1070 °C, the rise rate of the surface temperature increased from 6 × 107 to 9 × 107 K/s, and the melt depth was no more than 57 μm. The speed of the melt front during the pulse was 3 × 105 µm/s. Good agreement was observed between the experimental and theoretical values of the temperature characteristics and melt zone thickness.


2009 ◽  
Vol 19 (1) ◽  
pp. 33-38
Author(s):  
Tran Minh Thi

ZnS:Mn were prepared by wet chemical method with Mn doping concentration from 0 at% to 12 at%. The structure and particle size of the obtained powders were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and shown that all samples are single phase with sphalerite crystal structure and average particle size of about 5 - 7 nm. The dependence of Mn2+ ions doped concentration, and UV irradiation time on the luminescent intensity of ZnS:Mn nanocrystals was discussed.


2018 ◽  
Vol 2 (1) ◽  

Pure Ag nanoparticles were successfully prepared by using KBH4 , ascorbic acid, and holly leaf extract as reducing agents. The prepared Ag nanoparticles were characterized by various techniques to understand their chemical and physical properties. All the Ag nanoparticles showed granular particle morphology with a nano-scale size of 16.1- 29.2 nm and three visible photoluminescence peaks. By comparison, KBH4 showed sufficient high reducing ability and so resulted in a rapid formation of Ag nanoparticles, largest average particle size, and highest crystallinity. In contrary, holly leaf extract leads to the slowest formation of Ag nanoparticles, smallest average particle size, and lowest crystallinity. The Ag nanoparticles prepared with the KBH4 and holly leaf extract showed the highest and lowest photocatalytic activities, respectively. The crystallinity plays a more important role in photocatalytic activity rather than average particle size. Moreover, some hydroxyls existed on the surface of the Ag nanoparticles exists, indicating a good surface hydrophilicity. Small amounts of the impurities coming from the reducing agent residues acting as a capping layer were found on the surface of the Ag nanoparticles.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pimsumon Jiamboonsri ◽  
Sompit Wanwong

The green synthesis of silver nanoparticles (AgNPs) has been attractive in biomedical applications due to its nontoxic and eco-friendly approach. This study presents the facile, rapid, and cost-effective synthesis of AgNPs by photoassisted chemical reduction using Riceberry (RB) rice extract as a reducing agent. The effects of reaction parameters including photoirradiation, irradiation time, the volume ratio of silver nitrate (AgNO3) to RB extract, and pH condition on the AgNP formation were also investigated. The characterization of AgNPs was determined by UV–visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. For antibacterial application, the synthesized AgNPs were studied by disc diffusion method against Escherichia coli and Staphylococcus aureus. The results indicated that light irradiation was an important factor to accelerate the formation of AgNPs. The synthesis parameters including volume of RB extract and pH condition significantly affected the particle size and crystallinity of AgNPs. The volume ratio of AgNO3 to RB extract 1 : 12.5 at pH 2.5 under photoirradiation was the successful condition to form nanometer-sized crystalline particles (average particle size of 59.48 ± 0.37   nm ) within 30 min with a rate constant of 0.210 min–1. The FT-IR measurement also suggested that the phytochemical constituents in RB extract were served as reducing and stabilizing agents for the synthesis of AgNPs. Additionally, the obtained AgNPs from various conditions demonstrated the antibacterial activity against both strains. Therefore, this study proposes an effective integration technique to synthesize AgNPs within a short time for antibacterial application.


Sign in / Sign up

Export Citation Format

Share Document