Bioactivity of TiO2/Ti Composite Membrane with Different Crystral Phase

2011 ◽  
Vol 287-290 ◽  
pp. 69-72
Author(s):  
Min Jing Zhan ◽  
Gang Li ◽  
Qiang Wei ◽  
Hua Lei Cui ◽  
Ling Lin

The bioactivity of TiO2/Ti composite membrane with different crystral phase was studied by the culture of hypothalamic neurons in vitro for the application of immunoisolation. The kind of membrane supported on porous Ti has been prepared by sol-gel technique and the crystral phase was controlled by different sintering temperature. The crystral phase of TiO2, morphology and function of hypothalamic neurons were observed by X-ray diffraction (XRD), enzyme-linked immunosorbent assay (ELISA) and environmental sanning electron microscope (ESEM). The results showed that neurons could attach well to the TiO2 /Ti composite membranes with rutile phase and became bipolar. The long axon and dendrite with dendrite spine were interconnected by synapses. A complicated neural net were easily observed. The secretory level of β-endorphine remained between 51.3pmol/L and 40.6pmol/L all the times. However, the neurons in membranes with anatase were transformed into an umbilicate structure without processes. The secretory function of neurons also died out in 4 days. These results indicated that the TiO2 /Ti composite membranes with rutile phase were propitious to the neuron’s growth than the composite membranes with anatase phase and could be used as immunoisolation membranes.

2002 ◽  
Vol 740 ◽  
Author(s):  
A.D. Schmidt ◽  
S.B. Majumder ◽  
P.S. Dobal ◽  
R.S. Katiyar ◽  
D.C. Agrawal

ABSTRACTModifying their surface with a coating of another ceramic material can dramatically alter the properties of ceramic particles. In the present work we have demonstrated that the Al2O3 particles can be successfully coated by TiO2 using a novel sol-gel technique. The nature of these coatings was predicted on the basis of scanning electron microscopy imaging in conjunction with the micro-Raman scattering measurements. The surface morphology of these particles shows that either individual or group of sub-micron alumina particles are coated with the nano-crystalline titania particles. The thickness of the titania coating could be varied by changing the precursor sol concentration. Amorphous titania was converted to anatase phase at 400°C and upon further heating it started transforming to rutile phase, and both these phases coexisted in the coated particles that were heat treated up to 800°C. The mechanical strength of the titania coating was measured qualitatively by ultrasonicating the coated powders for longer duration to observe that titania coatings are strongly adhered with the alumina particles.


2013 ◽  
Vol 1601 ◽  
Author(s):  
A. Shoja ◽  
A. Nourmohammadi ◽  
M. H. Feiz

ABSTRACTThe aim of this research study is to produce high quality TiO2 nanotube arrays. It is shown that sol-gel electrophoresis is a suitable one to obtain vast-area TiO2 nanotube arrays when nanoporous alumina templates are used. To fabricate TiO2 nanotube arrays, alumina templates were produced via a two-step anodizing by a homemade anodizing cell using high purity phosphoric acid as the electrolyte with aluminum and platinum as electrodes. The semiconductor behavior of these templates can also be employed when producing conducting substrates for the grown TiO2 nanotubes. Stabilized titanium sol was prepared by modified hydrolysis of the titanium precursor using acetic acid. In order to produce TiO2 nanotube arrays, the template pores were filled with the precursor sol by applying a DC electric field. Then, the filled template was heat treated to crystallize the desired TiO2 phase. Scanning electron microscopy of TiO2 nanotube arrays showed that the nanotubes have been deposited in the channels of the nanoporous alumina template. X-ray diffraction data confirmed phase structure and composition of TiO2 nanotube arrays after heat treatment. To reach pure anatase phase, the samples were heated at 320°C and 400°C for two hours. To obtain pure rutile phase, the samples were heated at 320°C and 750°C for two hours.


2013 ◽  
Vol 24 ◽  
pp. 168-175
Author(s):  
Kirit S. Siddhapara ◽  
D.V. Shah

Nanocrystalline Cobalt-doped TiO2was prepared by Sol-Gel technique, followed by freeze-drying treatment at-30°C temperature for 12hrs. The obtained Gel was thermally treated at 200,400,600, 800°C. 1%, 2% and 4% Cobalt doped TiO2nanopowder has been prepared X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), was used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and rutile phase. Thermal gravimetric analysis shows Cobalt concentration affects thermal decomposition. UV-Vis Spectroscopy, Photo luminescence (PL), was used to study its Optical properties. Optical Bandgap were calculated with the incorporation of different concentration of cobalt. UV-Visible spectroscopy show variation in band gap for the sample treated at different temperature for same concentration. All Cobalt doped TiO2nanostructures shows an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Vibrating Sample Magnetometer.


MRS Advances ◽  
2016 ◽  
Vol 1 (14) ◽  
pp. 957-963
Author(s):  
R. Vasan ◽  
Y. F. Makableh ◽  
M. O. Manasreh

ABSTRACTAnatase and rutile titanium dioxide thin films grown by a low temperature process are investigated for their use as a single layer antireflection coating for GaAs solar cells. The thin films are obtained by spin coating a layer from the TiO2 sol-gel and subsequently annealing at 150 °C. The sol-gel is synthesized by the hydrolysis of titanium isopropoxide in the presence of an acid or a base. By controlling the pH of the sol-gel during growth, pure anatase and rutile phases are obtained. A pH of around 3.0 yields anatase phase while a pH of 9.0 yields pure rutile phase TiO2. The two different phases of TiO2 are characterized by measuring the Raman scattering spectra. The optical constants, thickness and reflectance of the thin films on GaAs are obtained using a spectroscopic ellipsometer. The sol-gel is spin coated on GaAs based solar cells and annealed at 150 °C to form the anti-reflective layer. The performance of the solar cells is evaluated before and after coating with the TiO2 films. The anatase TiO2 anti-reflective films performed better than the rutile with a maximum power conversion efficiency enhancement of 50%. Quantum efficiency enhancement of 58% and 25% are obtained with anatase and rutile phase films respectively. The performance enhancement of the solar cells using these thin films can be attributed to the destructive interference of light associated with a single layer coating on the solar cell surface.


2011 ◽  
Vol 287-290 ◽  
pp. 2225-2229 ◽  
Author(s):  
Chi Sheng Chien ◽  
Yu Sheng Ko ◽  
Tsung Yuan Kuo ◽  
Tze Yuan Liao ◽  
Ting Fu Hong ◽  
...  

Hydroxyapatite (HA) is a frequently used bioactive coating material. However, when HA coating is soaked in the simulated body fluid (SBF), it is usually detached from substrate material due to its high dissolution rate in the solution. Recently, it is found that Fluorapatite (FA) has a better anti-dissolution ability than HA. In this study, Fluorapatite was mixed with TiO2powder (either Anatase phase (A) or Rutile phase (R)) as a coating material precursor, and then be deposited on Ti-6Al-4V substrate to form the coating layer by using Nd-YAG laser cladding process. After soaking in SBF for various days, it is observed that dense ball-like apatite grew faster on the surface of the FA+R coating layer than that on the surface of the FA+A specimens. The corresponding Ca/P ratios of FA+R specimens also dropped faster than FA+A ones.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jian-Wen Wang ◽  
Min-Hsiung Hon ◽  
Yi-Ming Kuo ◽  
Mei-Hui Chung

A novel composite membrane ofβ-tricalcium pyrophosphate (β-TCP) and fructose- (F-) mediated chitosan/poly(ethylene glycol) (CS/PEG) was prepared by thermally induced phase separation technique. The prepared composite membranes were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical property, swelling, degradation, and cytotoxicity of the composite membranes were evaluated in vitro with respect to its potential for use as biodegradable guided tissue regeneration (GTR) membrane. In vitro degradation tests showed the composite membrane with a controllable degradation rate when changing theβ-TCP content. The incorporation ofβ-TCP granules also caused a significant enhancement of tensile strength. Whenβ-TCP content is controlled to 50 wt%, homogeneous composite membranes with well mechanical property and enzymatic degradation rate can be obtained. Cytotoxicity assay demonstrates that the composite membranes were nontoxic and had very good cell compatibility. Most importantly, the release of calcium ions and glucosamine from the composite membranes was proved to increase the cell proliferation of NIH3T3. The results of this study have indicated that this novel F-β-TCP/CS/PEG composite can be a suitable material for GTR applications.


2018 ◽  
Author(s):  
Shanmuga Sundar Saravanabhavan ◽  
KANNAN NATARAJAN ◽  
Sundaravadivel Elumalai ◽  
Sarang Zsolt ◽  
Mukunthan K SELVAM ◽  
...  

Background The application of polymeric materials in medical industry has grown drastically in the last two decades due to their various advantages compared to existing materials. The present research work emphases on the sol-gel technique to formulate the polymethyl methyl acrylate/polystyrene/silica composite membrane. Methods The characteristic of the composite was investigated through modern state art of instrumentation. Results The functional groups attached to the polymer was absorbed by FTIR. The FTIR spectrum confirm that the blend was mixed thoroughly and the formation of unite intimately between the polymers. The membranes were observed by SEM for its surface homogeneity which depends upon the composition of the two blending polymers. The captured SEM images showed the formation of microcracks on the surface, which was evidently controlled by varying the constituent polymer ratios. The prepared blend membranes with 2:1 ratio of PMMA/PS/Si displayed higher water uptake compared to other blended membranes. The composite membranes had good hydroxyl apatite growth in SBF solution. Furthermore, the in vitro cytotoxicity studies carried out by MTT method, using RAW macrophage cells showed that all the samples exhibited excellent cell viability. Conclusion The inflammatory response of composite with equal concentration of PMMA-PS were performed and observed no inflammation in comparison with control and other tested concentrations.


2018 ◽  
Author(s):  
Arizka Tamarani ◽  
Rahadian Zainul ◽  
Indang Dewata

One of the reported doping agent to increase TiO2 activity is Cu. In this research, TiO2 was prepared by So-Gel method. Preparation was performed by calcinaton at the temperature range of 400, 500, 600ᵒC for 2 hours with a corresponding dopan concentration of 0%, 1%, 3%, 5% mol of TiO2. The nanoparticle materials was characterized using XRD. It is found that anatase phase occur in the calcinations temperature of 400ᵒC and transform to rutile phase at 500ᵒC. The crystallite size of Cudoped TiO2 with dopan concentration of 5% are found 4.63 nm, 8.70 nm, 6.09 nm respectively at 400ᵒC, 500ᵒC, 600ᵒC.


2013 ◽  
Vol 864-867 ◽  
pp. 613-616
Author(s):  
Xue Mei Qi ◽  
Xin Yuan Zhu ◽  
Jiang Wu ◽  
Yu Wu ◽  
Han Cheng Luo

The TiO2-based photocatalysts have been synthesized by using sol-gel process and their photocatalytic activities were studied by the degradation of methylene blue (MB). It was shown that the calcination temperature has great influence on the crystalline phase transition of TiO2. For all the samples (Ag-doped and undoped TiO2photocatalysts) calcined at 573K, only anatase phase was observed from XRD diffraction spectra and the intensity of peaks is weak. After the calcined at 773K, a mixture of anatase-rutile phase appeared. The contents of rutile phase were about 85% and77% for undoped and Ag-adopted TiO2photocatalysts.There were only rutile phases for all the TiO2photocatalysts calcined at 973K observed from XRD diffraction spectra. Magnetically stirring time of A solution before added B had no obvious effects on the polymorphs transition of TiO2.


2010 ◽  
Vol 297-301 ◽  
pp. 764-770
Author(s):  
Yong Woo Kim ◽  
Eun Nara Cho ◽  
Soo Chang Choi ◽  
Deug Woo Lee

M-CNTs (Multiwall Carbon Nano Tubes) can be used as an electrode, transferring electrons and heat very easily. This property helps transfer electrons created in TiO2 layer of DSSC (Dye-sensitized Solar Cell). CNTs layer with TiO2 utilized for the photocatalyst is expected to contribute to improve the efficiency of the solar cell. The Photocatalyst of TiO2 thin film was manufactured from titanium isopropoxide, ethanol, and HCl by a sol-gel process. To determine the property of TiO2 thin film with CNT, we performed to mix acid dispersed CNT in TiO2 Sol-gel and make coating membranes using sol-gel with different densities of CNT. It was found that the crystal structure changed from the anatase phase to the rutile phase having higher efficiency by XRD measure after treatment of high temperature sintering. To demonstrate the property of each sample, the transmittance of the TiO2 thin film was measured by a spectrometer and dispersion of CNT of the thin film was measured by SEM. In conclusion, the capacitance as the parameter which can affect performance of DSSC was investigated.


Sign in / Sign up

Export Citation Format

Share Document