Hydrodynamic Analysis of Oil Storage Vessels for National Strategic Petroleum Reserve

2011 ◽  
Vol 291-294 ◽  
pp. 2541-2551
Author(s):  
Gang Jun Zhai ◽  
Yong Cheng ◽  
Wen Hua Wang ◽  
Yi Huang

This paper expatiates hydrodynamic time-domain analysis on strategic oil storage vessels in free floating condition or with dolphin-fender mooring system by means of AQWA numerical software. The results indicate that motion responses of the oil storage vessel with dolphin-fender mooring have improved significantly. The time-history of wave diffraction forces in incident wave direction are basically consistent between the free floating and moored condition. However, in vertical direction of incident wave, the diffraction wave force of the oil storage vessel in free floating condition is obviously different from that with mooring system, which is the result of the coupling interaction between dolphin and vessels. Mooring forces include fender reaction and cable tension, as for which dominate, it depend on evocable motion responses about incident wave direction.

2014 ◽  
Vol 638-640 ◽  
pp. 1758-1762
Author(s):  
Bao Lei Geng ◽  
Ci Heng Zhang

By taking the 3D Laplace equation as the basic governing equation, a mathematical model with respect to the interaction between linear waves and arbitrary 3D structures was founded. With an example of wave action with four cylinders, numerical results show that when incident wave direction is 22.5°, wave force Fx on 1# cylinder and 2# cylinder is the biggest and when incident wave direction is 0°, wave force Fx on 3# cylinder and 4# cylinder is the biggest; wave force Fy and the wave height on origin point increases with incident wave direction increasing for the given layout and incident wave conditions.


2018 ◽  
Vol 38 ◽  
pp. 03046
Author(s):  
Chen Yu

In this paper, a new method for the numerical simulation of structural model is proposed,which is employed to analyze the pounding response of caissons subjected to storm surge loads.According to the new method,the simulation process is divided into two steps. Firstly, the wave propagation caused by storm surge is simulated by the wave-generating tool of Flow-3D, and recording the wave force time history on the caisson. Secondly,a refined 3D finite element model of caisson is established,and the wave force load is applied on the caisson according to the measured data in the first step for further analysis of structural pounding response using the explicit solver of LSDYNA. The whole simulation of pounding response of a caisson caused by “Sha Lijia” typhoon is carried out. The results show that the different wave direction results in the different angle caisson collisions, which will lead to different failure mode of caisson, and when the angle of 60 between wave direction and front/back wall is simulated, the numerical pounding failure mode is consistent with the situation.


2017 ◽  
Vol 31 (09) ◽  
pp. 1750059 ◽  
Author(s):  
Mohamad Fazeli ◽  
Seyyed Hassan Sedighy ◽  
Hamid Reza Hassani

A general approach to design near perfect invisible ground and free space cloaks is introduced in this paper. The proposed method which is based on the optical transformation theory, leads to homogeneous constitutive parameters for the cloaks without any singularities. Moreover, the single-step mapping process with linear relations achieves an uncomplicated designing process. Invisibility performance obtained by using this approach does not depend on the incident wave direction, also. The simplicity and design flexibility of the introduced approach with the homogeneity of extracted parameters greatly facilitate the design and fabrication processes of the both proposed ground and free space invisible cloaks. The numerical simulations prove the capability and universality of the proposed design approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Meysam Rajabi ◽  
Hassan Ghassemi ◽  
Hamidreza Ghafari

In this paper, a numerical study is presented to investigate wave force on the connections of main parts of a side-anchored straight floating bridge concept for the Bjørnafjorden fjord crossing. The floating bridge is supported by 18 pontoons, and three groups of mooring lines are employed to restrain the bridge against horizontal loads and increase its transverse stiffness. The created wave forces at the connections of pontoon-column and column-girder of the floating bridge considering the effects of short-crested and long-crested waves, varying wave direction, hydrodynamic interaction between pontoons, and mooring system are analyzed. It is found that short-crested and long-crested waves depending on their direction decrease or increase the wave forces on the joints. Considering that the effect of hydrodynamic interaction between pontoons can increase or reduce the wave forces and moments created in the joints, which means the neglect of the hydrodynamic interaction effects between the pontoons to simplify the modeling of this type of floating bridge, may be unacceptable. Moreover, the results showed that the bridge mooring system does not merely reduce the wave forces and moments at joints along the bridge.


2019 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Dezhi Ning ◽  
Zechen He ◽  
Ying Gou ◽  
Malin Göteman

Near trapping is a kind of strong hydrodynamic interaction phenomenon in a regular array under specific incident wave conditions, which causes the excitation force on the structures in the array to change suddenly. In this paper, based on linear potential flow theory, the effects of near trapping on the hydrodynamic interaction and wave-power extraction characteristics of linear periodic arrays composed of the oscillating float type wave energy converters are studied by using the higher-order boundary element method in a frequency domain. The parameters considered include the separation spacing, number of devices, and incident wave direction. It is found that the near trapping significantly reduces the overall wave-power extraction, especially for the cases with a large number of devices, and changes the trend of the power distribution. The occurrence of the near trapping phenomenon depends on the ratio of the separation spacing to the wavelength and the incident wave direction. The results highlight the effective layout of linear arrays under the influence of near trapping, which not only ensures the total production power, but also reduces the power difference among wave energy converters.


2012 ◽  
Vol 1 (33) ◽  
pp. 35 ◽  
Author(s):  
Masumi Serizawa ◽  
Takaaki Uda ◽  
Shiho Miyahara

The BG model (a three-dimensional model for predicting beach changes based on Bagnold’s concept) was used to simulate the shoreline evolution caused by the high-angle wave instability discussed by Ashton et al. Three calculations were carried out: the wave direction was assumed to be obliquely incident from 60˚ counterclockwise (Case 1) or from the directions of ±60˚ with probabilities of 0.5:0.5 (Case 2) and 0.65:0.35 (Case 3), while determining the incident wave direction from the probability distribution at each step. The three-dimensional development of multiple sand spits and cuspate forelands with rhythmic shapes was successfully explained using the BG model. The results of the previous study conducted by Ashton et al. were reconfirmed and reinforced.


1992 ◽  
Vol 25 (9) ◽  
pp. 211-216
Author(s):  
A. Akyarli ◽  
Y. Arisoy

As the wave forces are the function of the wave height, period and the angle between the incoming wave direction and the axis of the discharge pipeline, the resultant wave force is directly related to the alignment of the pipeline. In this paper, a method is explained to determine an optimum pipeline route for which the resultant wave force becomes minimum and hence, the cost of the constructive measures may decrease. Also, the application of this method is submitted through a case study.


2020 ◽  
Vol 143 ◽  
pp. 01021
Author(s):  
Jiang Zongnan

The irregular waves are simulated by using standard spectrum. Instantaneous value method, Fourier analysis method, least square method and "harbour hydrological code" are used to determine the moment force of coefficient CM and drag coefficient CD. Then CM and CD that linearized by Borgman L.E. equation are substituted into Morison equation. The time history curve of the wave force on the pile is calculated and compared with the measured wave force data under the action of irregular wave to analyze the advantages and disadvantages of several methods to determine CM and CD. The results show that the comparison between CM and CD determined by Fourier analysis and least square method is practical.


2013 ◽  
Vol 380-384 ◽  
pp. 35-38
Author(s):  
Dong Bing Liu ◽  
Wen Bin Liu

In the paper,using geometry and integral knowledge, the functional relationship is determined between standard oil height and oil storage capacity when oil tank doesnt change position.Then we study that the location of tank can incline in vertical direction furtherly, and compare the theoretical calculation with experimental data .Finally, factual oil storage tank model is discussed.


Sign in / Sign up

Export Citation Format

Share Document