Pultrusion Technology Optimization for Hybrid Fiber Composites Based on DSC and Mechanical Property Testing

2011 ◽  
Vol 295-297 ◽  
pp. 383-387 ◽  
Author(s):  
Li Chen ◽  
Qi Lin Zhao ◽  
Ke Bin Jiang ◽  
Yong Ding

In the interest of improving the curing effect and mechanical properties of pultruded carbon/glass bybrid fiber composites, the DSC (Differential Scanning Calorimetry) technology was introduced and the curing DSC curves for the hybrid fiber composites at 4 different heating rates was attained. Then the range of the processing temperature for the three-stage heating pultrusion was primarily determined with T-β method. Subsequently a kind of carbon/glass hybrid composite pole with a diameter of 11mm was selected as the research object, and was manufactured with varies of processing temperatures and speeds. The produced poles were mechanically tested to investigate the effect of processing parameters on the mechanical properties of the composite, so as to further more ascertain the processing parameter ranges fitting to this material formula. As the result shows: the pultrusion processing parameters for the hybrid fiber composite acquired in this study can satisfy the require of manufacturing; compared with the traditional method that attain processing parameters by experience, the method for attaining processing parameters suggested in this paper is more efficiency, more economical and more accurate.

2021 ◽  
Author(s):  
Antonello Astarita ◽  
Fausto Tucci ◽  
Alessia Teresa Silvestri ◽  
Michele Perrella ◽  
Luca Boccarusso ◽  
...  

Abstract This paper deals with the dissimilar friction stir lap welding of AA2198 and AA7075 sheets. The influence of processing parameters, namely welding speed and tool rotational speed on joint features, microstructure, and mechanical properties were investigated implementing a full factorial design of experiments. During the welding process, axial and transversal forces were continuously measured using a dedicated sensed fixture aiming at the correlation of this processing parameter with the quality of the achieved joints. The reported outcomes showed a very narrow processing window in which it was possible to avoid the formation of defects while the formation of an hook was observed for all the joints welded. The influence of the weld bead morphology on the lap shear strength was elucidated proving that the strength is ruled by the hook morphology. A correlation between the process parameters and the forces arising was also attempted. The final microstructure of the joints was studied and explained and also compared with the microhardness results.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


2019 ◽  
Vol 33 (8) ◽  
pp. 1078-1093 ◽  
Author(s):  
Siddhartha Brahma ◽  
Selvum Pillay ◽  
Haibin Ning

This article looks at liquid molding of polyamide 6 (PA6) via vacuum assisted resin transfer molding (VARTM) of discontinuous recycled carbon fiber composites. Its mechanical, thermal, and optical characterization is compared to hydroentanglement/compression molding. Liquid-molded composites show consistent improvement in their tensile and impact properties at three different weight fractions in comparison to hydroentanglement/compression molding. There was roughly a 10 and 13% increase in its tensile strength, modulus, and impact strength properties at 30 and 40% weight fractions and almost a 120% increase at 50% weight fraction. Fourier-transform infrared spectroscopy and differential scanning calorimetry data show that the caprolactam was synthesized to PA6 and was comparable to commercial grade PA6 used in this research. Scanning electron microscopy studies show poor wet out in the case of hydroentanglement/compression molding as compared to VARTM. The combination of better mechanical performance and lower processing temperature (165°C) shows promise in being a viable method to process PA6-based recycled fiber composites.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1673 ◽  
Author(s):  
Dominique Larrea-Wachtendorff ◽  
Gipsy Tabilo-Munizaga ◽  
Giovanna Ferrari

Starch-based hydrogels have received considerable interest due to their safe nature, biodegradability and biocompatibility. The aim of this study was to verify the possibility of producing natural hydrogels based on potato starch by high hydrostatic pressure (HHP), identifying suitable processing conditions allowing to obtain stable hydrogels, as well as to characterize structural and mechanical properties of these products. Sieved (small size granules and medium size granules) and unsieved potato starch samples were used to prepare aqueous suspensions of different concentrations (10–30% w/w) which were processed at 600 MPa for 15 min at different temperatures (25, 40 and 50 °C). Products obtained were characterized by different techniques (light and polarized microscopy, Fourier transform infrared spectroscopy (FTIR), rheology and differential scanning calorimetry (DSC)). Results obtained so far demonstrated that potato starch suspensions (20% starch–water concentration (w/w)) with granules mean size smaller than 25 µm treated at 600 MPa for 15 min and 50 °C showed a complete gelatinization and gel-like appearance. Potato HHP hydrogels were characterized by high viscosity, shear-thinning behavior and a highly structured profile (G’ >> G’’). Moreover, their FTIR spectra, similarly to FTIR profiles of thermal gels, presented three absorption bands in the characteristic starch-gel region (950–1200 cm−1), whose intensity increased with decreasing the particle size and increasing the processing temperature. In conclusion, potato starch hydrogels produced by HHP in well-defined processing conditions exhibited excellent mechanical properties, which can be tailored according to the requirements of the different applications envisaged.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1459
Author(s):  
Agbelenko Koffi ◽  
Fayçal Mijiyawa ◽  
Demagna Koffi ◽  
Fouad Erchiqui ◽  
Lotfi Toubal

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.


2013 ◽  
Vol 689 ◽  
pp. 382-388
Author(s):  
Ju Seok Oh ◽  
Song Woo Nam ◽  
Sun Woong Choi

The importance of NFC (Natural Fiber Composite) as construction materials is widely accepted all over the world. But it seems that NFC manufacturers have complicated information about the effect of ingredients to their products. Hence systematic study for optimum composition of NFC is needed. This study is aimed to elucidate the effect of ingredients to the mechanical properties of NFC. We devised design of experiments to draw a firm conclusion. The experiments were conducted with polymer processing machines which are widely accepted in polymer processing industries. The result of ANOVA analysis showed that the most important ingredient of NFC is wood flour. And as the length of wood flour increases, the mechanical properties are enhanced. Contrary to wood flour, base resin has little effect to the mechanical properties of NFC. The effect of coupling agent to flexural modulus is not ignorable, but the effect to flexural strength is different from that of flexural modulus.


This study focused on the Kevlar fiber composite, the demand of Kevlar composites increasing day-byday because it’s light weight and good mechanical properties. There are different types of fiber composites are available like Carbon, Basalt, Glass, Jute, Kenaf, Flax, Hemp and Kevlar etc. Out of these available material Kevlar is one of the most favorable composite material. Properties of Kevlar include high rigidity modulus, toughness, thermal stability and most importantly strength. Moreover, the properties of Kevlar composite can be increased by applying the different hybridization and treatment process. The aim of this study, to explore the different types of hybridization and treatments that can be applied for improving the mechanical properties of Kevlar composite


Author(s):  
C. Phetolo ◽  
V. Matjeke ◽  
J. van der Merwe

SYNOPSIS The mechanical properties and microstructure of AlSilOMg alloy samples that were printed by selective laser melting (SLM) were studied to determine the effect of processing parameters and building orientation. After printing, the alloy was stress relieved at 250°C for 2 hours. The microstructures were analysed by optical microscopy and scanning electron microscopy (SEM) to determine the alloy phases and distribution. Phase transformation characteristics of the material were evaluated using differential scanning calorimetry (DSC). Mechanical properties were determined by subjecting the XY- and Z-built samples to tensile and nano-indentation testing. The samples from the tensile tests were then used to perform fractographic analysis by SEM. The microstructural properties in each orientation revealed a non-homogeneous microstructure which was characterized by a semi-elliptical tract and fine silicon precipitates, which were found to be softer along the fusion zone. The DSC thermograms revealed that the material underwent two phase transformations during the first heating cycle. The mechanical properties revealed a higher UTS, higher yield strength, and a lower percentage elongation in the Z orientation than in the XY orientation. Fractographic analysis showed that crack initiation in both orientations started from the surface in a brittle manner due to surface flows, and then propagated via microvoid coalescence. Keywords: AlSi10Mg alloy, additive manufacturing, mechanical propeerties, microstructure.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Govindaraj Ramkumar ◽  
Satyajeet Sahoo ◽  
G. Anitha ◽  
S. Ramesh ◽  
P. Nirmala ◽  
...  

Over the past few years, natural fiber composites have been a strategy of rapid growth. The computational methods have become a significant tool for many researchers to design and analyze the mechanical properties of these composites. The mechanical properties such as rigidity, effects, bending, and tensile testing are carried out on natural fiber composites. The natural fiber composites were modeled by using some of the computation techniques. The developed convolutional neural network (CNN) is used to accurately predict the mechanical properties of these composites. The ground-truth information is used for the training process attained from the finite element analyses below the plane stress statement. After completion of the training process, the developed design is authorized using the invisible data through the training. The optimum microstructural model is identified by a developed model embedded with a genetic algorithm (GA) optimizer. The optimizer converges to conformations with highly enhanced properties. The GA optimizer is used to improve the mechanical properties to have the soft elements in the area adjacent to the tip of the crack.


Sign in / Sign up

Export Citation Format

Share Document