Influence of High Current Pulsed Electron Beam Irradiation on Ni-P Electroless Plating

2011 ◽  
Vol 299-300 ◽  
pp. 77-81
Author(s):  
Yang Xu ◽  
Sheng Zhi Hao ◽  
Xiang Dong Zhang ◽  
Min Cai Li ◽  
Chuang Dong

The surface irradiation of 6063 aluminum alloy by high current pulsed electron was conducted with the aim of replacing the complicated pre-treatment in the processes of electroless plating. To explore the microstructure changes, optical metallography, SEM (scanning electron microscope), XRD (X-ray diffraction) analyses were carried out, and the sliding tests were used for the detection of wear resistance. It was concluded that the HCPEB irradiation could replace the pre-treatment of aluminum substrate as required in conventional electroless plating with a decreased surface roughness of Ni-P alloy plating layer. The plates exhibited an amorphous microstructure as demonstrated by XRD analysis. The plates, produced with the routine of HCPEB irradiation, activation and electroless plating possess, also exhibited good quality, even better than that of conventional electroless plating technique.

2013 ◽  
Vol 787 ◽  
pp. 363-366
Author(s):  
Le Ji ◽  
Jie Cai ◽  
Shi Chao Liu ◽  
Zai Qiang Zhang ◽  
Xiu Li Hou ◽  
...  

The surface of 3Cr13 martensitic stainless steel was irradiated by high current pulsed electron beam (HCPEB). The microstructures of the irradiation surface were characterized by X-ray diffraction and electron microscopy. After HCPEB irradiation, formation of a melting layer with depth of about 4 μm on the irradiated surface was determined. Further microstructural investigations indicate that the surface melted layer consists of nanoaustenite and ultrafine carbide particles, which primarily appear at grain boundary triple junction. Additionally, the microhardness and corrosion resistance of the irradiated surfaces was improved significantly. The formation of the nanoaustenite layer induced by HCPEB irradiation was believed to be the dominating reasons for the improvement of comprehensive performance of the material surface.


2012 ◽  
Vol 620 ◽  
pp. 257-262 ◽  
Author(s):  
Niraj Bala ◽  
Harpreet Singh ◽  
Satya Prakash

X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals detailed information about the chemical composition and crystallographic structure of materials. In this work Ni-20Cr and Ni-50Cr coatings were deposited on two boiler steels namely T22 and SA 516 steel. The measurement of residual stresses of these cold sprayed coatings was done with the help of X-ray diffraction technique. This paper discussed the XRD study of the as-sprayed coatings. Further the XRD technique was used to study the uncoated and coated steels after cyclic exposure to air, molten salt [Na2SO4-60%V2O5], and actual boiler environments. The results obtained from the XRD analysis have been shown. The weight change results showed that the coated steels performed better than their uncoated counterparts which might be attributed to the formation of protective phases.


2020 ◽  
Vol 59 (1) ◽  
pp. 514-522
Author(s):  
Yue Sun ◽  
Kui Li ◽  
Bo Gao ◽  
Pengyue Sun ◽  
Haiyang Fu ◽  
...  

AbstractIn this paper, the microstructure and wear resistance of Zr-17Nb alloy treated by high current pulsed electron beam were studied in detail. A phase change occurs after pulse treatments using X-Ray Diffraction (XRD) analysis, showing β (Nb) phase and α (Zr) phase transformed by a part of β (Zr, Nb) phase. Also, narrowing and shifting of β (Zr, Nb) diffraction peaks were found. Scanning Electron Microscope (SEM) and metallographic analysis results reveal that the microstructure of alloy surface before high current pulsed electron beam (HCPEB) treatment is composed of equiaxed crystals. But, after 15 and 30 pulse treatments, crater structures are significantly reduced. Besides, it was also found that the alloy surface has undergone eutectoid transformation after 30 pulse treatments, and the reaction of β (Zr, Nb) → αZr + βNb had occurred. Microhardness test results show that microhardness value presents a downward trend as the number of pulses increases, which is mainly due to the coarsening of the grains and the formation of a softer β (Nb) phase after phase transformation. The wear resistance test results show that the friction coefficient increases first, then decreases and then increases with the increase of pulse number.


2013 ◽  
Vol 423-426 ◽  
pp. 276-280
Author(s):  
Hui Hui Wang ◽  
Sheng Zhi Hao

High current pulsed electron beam (HCPEB) treatment was conducted on 40CrNiMo7 steel. The surface microstructure was characterized by metalloscopy and X-ray diffraction methods. The microhardness and wear resistance of modified surface were measured. After the HCPEB treatment, the surface crater structure was observed due to the inhomogeneity of initial material. A modified layer of depth ~ 7 μm was formed with a hybrid microstructure composed mainly of martensite and a small quantity of austenite. The surface microhardness of HCPEB modified sample was increased drastically to more than 1000 HK. The wear resistance increased by about 36% as compared to the initial state.


2012 ◽  
Vol 610-613 ◽  
pp. 3587-3590
Author(s):  
Li Wei ◽  
Xiao Qing Shi ◽  
Ying Wang ◽  
Ying Chong Ma ◽  
Ji Xiang Zhao ◽  
...  

Recently, the use of lignocellulosic fibres to reinforcing composite has received an increased attention. However, lack of good interfacial adhesion makes important the treatment of raw materials. In this study, the raw material Luffa fibres were treated by ionic liquids/water mixture and this treatment proved to be useful by elimination of gummy and waxy substances. The effect of the treatments on the structure of fibres was showed using SEM and XRD (X-Ray Diffraction) analysis. The SEM results revealed that the treatment resulted in a removal of lignin, pectin and hemicellulose substances, and change the characteristics of the surface topography. The XRD analysis shows the increase of crystallinity index.


2021 ◽  
Author(s):  
Daniel T ◽  
Balasubramanian V ◽  
Sivakumar G ◽  
Kannusamy Mohanraj

Abstract This study reports the opto-structural, morphological, topological and electrical properties of thermally evaporated AgxBi2-xS3-y thin film prepared for various x and y values (x= y= 0, 0.25, 0.50, 0.75 and 1). The films have cubic structured AgBiS2 along with orthorhombic structured Bi2S3 as confirmed from X-ray diffraction (XRD) analysis. The films showed higher optical absorption coefficient (105cm-1) in the visible region and band gap values are found to be decreased from 2.08 eV to 1.35 eV for AgxBi2-xS3-y (x= y = 0 to 1) films. Scanning electron microscope (SEM) images showed the uniform distribution of spherical particles. Carrier concentration of the films are better than x= y= 0 as observed from Hall effect and Mott- Schottky plots. The FTO/ AgxBi2-xS3-y (x= y = 1) photoelectrochemical cell yields the photoconversion efficiency (PCE) of 7.03 %. The device FTO/ AgxBi2-xS3-y (x= y = 1) CdS/Ag solar cell has exhibited PCE of 3.26%.


2006 ◽  
Vol 67 (9-10) ◽  
pp. 2007-2012 ◽  
Author(s):  
V.V. Efimov ◽  
E.A. Efimova ◽  
K. Iakoubovskii ◽  
S. Khasanov ◽  
D.I. Kochubey ◽  
...  

TAPPI Journal ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 17-23
Author(s):  
KEVIN TAYLOR ◽  
RICH ADDERLY ◽  
GAVIN BAXTER

Over time, performance of tubular backpulse pressure filters in kraft mills deteriorates, even with regular acid washing. Unscheduled filter replacement due to filter plugging results in significant costs and may result in mill downtime. We identified acid-insoluble filter-plugging materials by scanning electron microscope/energy-dispersion X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis in both polypropylene and Gore-Tex™ membrane filter socks. The major filter-plugging components were calcium sulfate (gypsum), calcium phosphate (hydroxylapatite), aluminosilicate clays, metal sulfides, and carbon. We carried out detailed sample analysis of both the standard acid-washing procedure and a modified procedure. Filter plugging by gypsum and metal sulfides appeared to occur because of the acid-washing procedure. Gypsum formation on the filter resulted from significant hydrolysis of sulfamic acid solution at temperatures greater than 130°F. Modification of the acid-washing procedure greatly reduced the amount of gypsum and addition of a surfactant to the acid reduced wash time and mobilized some of the carbon from the filter. With surfactant, acid washing was 95% complete after 40 min.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Sign in / Sign up

Export Citation Format

Share Document