A Novel Method for Preparing High Efficient Fluorescence-Encoded Microspheres with Semiconductor Nanocrystals

2011 ◽  
Vol 306-307 ◽  
pp. 1284-1288 ◽  
Author(s):  
Hang Yu ◽  
Lei Tao

A novel method with two steps for preparing high efficiency fluorescence nanocrystals (NCs)-encoded microspheres was developed. First, a series of polystyrene (PS) microspheres from 1 μm to 5 μm in diameter were prepared by dispersion polymerization; then, after a swelling process with CdSe NCs of different size the PS microspheres were encoded quantitatively. This method for fluorescence-encoding of microspheres was shown to have the following outstanding characteristics: (1) An emulsion containing CdSe NCs and swelling agents (chloroform) are firstly used for introduction of NCs into microspheres. (2) The embedded nanocrystals remain their original properties and they are not simply absorbed onto the surface of the microspheres but being carried into the inner of microspheres and so the NCs cannot be released or leaked out easily. As-prepared fluorescence-encoded microspheres could conjugate with proteins by some further surface modification, so they have a great potential to be applied to such fields as biochemistry, molecular biology, cell biology, immunology, etc. In addition, the method could be operated easily and reproducibly.

Author(s):  
Chen-Jing Sun ◽  
Li-Ping Zhao ◽  
Rui Wang

: With the development of industrialization, the global environmental pollution and energy crisis are becoming increasingly serious. Organic pollutants pose a serious health threat to human beings and other organisms. The removal of organic pollutants in environment has become a global challenge. The photocatalytic technology has been widely used in the degradation of organic pollutants with its characteristics of simple process, high efficiency, thorough degradation and no secondary pollution. However, the single photocatalyst represented by TiO2 has disadvantages of low light utilization rate and high recombination rate of photocarriers. Building heterojunction is considered one of the most effective methods to enhance the photocatalytic performance of single photocatalyst, which can improve the separation efficiency of photocarriers and utilization of visible light. The classical heterojunction can be divided into four different cases: type I, typeⅡ, p–n heterojunctions and Z-scheme junction. In this paper, the recent progress in the treatment of organic pollution by heterostructure photocatalysts is summarized and the mechanism of heterostructure photocatalysts for the treatment of organic pollutants is reviewed. It is expected that this paper can deepen the understanding of heterostructure photocatalysts and provide guidance for high efficient photocatalytic degradation of organic pollutants in the future.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 9955-9963
Author(s):  
Yanjing Liu ◽  
Jiawei He ◽  
Bing Zhang ◽  
Huacheng Zhu ◽  
Yang Yang ◽  
...  

Microwave enabled air plasma was boosted by a carbon fiber cloth (CFC) and used for the high-efficiency surface modification of the CFC, yielding CFCs with tunable contents of oxygen and each O-containing group.


2021 ◽  
Author(s):  
Harry Singer ◽  
Terrance G Cooper

Abstract Micromanipulators, more than any other instrument, opened the early doors to developing the powerful genetics of yeast that underlies much of the molecular work today. The ability to separate the spores of a tetrad and analyze their phenotypes generated the genetic maps and biology upon which subsequent cloning, sequencing, cutting edge molecular and cell biology depended. This work describes the development of those micromanipulators from garage to barn to factory and the developer of the sophisticated instruments we use today. For more than 30 years Carl Singer and his family were staunch and generous supporters of the International Conferences on Yeast Genetics and Molecular Biology meetings both in Europe and America. Carl Singer's displays at meetings became a traditional fixture and engaged the appetites of many students and advanced researchers to employ a technique that many perceived as too complicated or difficult, but which he made simple and easy to learn. His experiences also document a sketch of the international yeast meetings, their venues and how they developed through the years.


Author(s):  
Aya Mabrouki ◽  
Mohamed Latrach

This chapter proposes an overview of microwave energy harvesting with focuses on the design of high efficiency low power rectifying circuits. A background survey of RF energy harvesting techniques is presented first. Then, the performances of conventional rectifier topologies are analyzed and discussed. A review of the most efficient rectenna designs, from the state of the art, is also presented. Design considerations for low power rectifier operations are detailed and new high efficient rectifying circuits are designed and evaluated in both GSM and ISM bands under low power constraints.


2019 ◽  
Vol 3 (122) ◽  
pp. 59-71
Author(s):  
Volodymyr Serhiiovych Hryshyn ◽  
Serhii Oleksiiovych Abramov

Technological possibilities of jet processing cause increased attention to the study of the regularities of the process. The main interest for practice is the establishment of the kind of dependencies between technological parameters (abrasive particles size, particle speed, concentration, compressed air pressure, attack angle, physical and mechanical properties of particles and surface to be treated) and initial process parameters (roughness of the treated surface, removal rates of the metal and libel). That, in turn, determines the necessity of optimal choice of the values of technological parameters in the conditions of a concrete production situation. The basic regularities can be established as a result of regression analysis of experimental data. However, the use of the resulting laws is limited to the complexity of the process and relatively narrow areas of changing the parameters of the experiment.The purpose of the work is to determine the factors that determine the formation of a microrelief in the area of the abrasive air jet, the relationship between them and the degree of their effect on the intensity of the formation of a microrelief; formation of a model of finishing treatment of collector plates, creation of theoretical bases and methodology of designing high-efficient resource-saving technological processes of production of motor collectors of electric machines.Analysis of recent research and publications. The following contributions were made to the development of the theory of modeling of the inkjet-abrasive surface treatment: Volovetsky O.E., Denysyuk V.Yu., Kharchik M.M., Buts BP, Andilahi A.A., Novikov FV, Gordeyev AI, Urbanyuk Ye.A., Silin R.S. and other.The most universal approach based on determining the search dependencies and solving the problem of optimizing the technological parameters of the processing process as a result of statistical simulation, namely the ability to control the input parameters before the start of the model or in the process of work - one of the key benefits of using simulation modeling for the analysis of systems and processes. This allows you to determine the optimal parameters, which maximize the efficiency of the processes, determine the relationship between the input and output parameters.The paper considers: creation of theoretical bases and methodology of designing high-efficiency resource-saving technological processes of production of motor collectors of electric machines; the process of formation of microrelief of collector plates in the area of the abrasive air jet, the relationship between the factors and the degree of their influence on the intensity of formation. The formation of a model of finishing treatment of collector plates treated with silicon carbide (black) was determined.Prospects for further research are the improvement of the technological process of obtaining collector nodes on the possibilities of implementation.


1991 ◽  
Vol 10 (1) ◽  
pp. 18-25
Author(s):  
D. I. Ferreira

Conventional plant breeding has made a significant impact on the increase in crop production during the last half century. Several shortcomings however, opened up the opportunities for the application of biotechnology in plant breeding. The vari­ous approaches in the field of cell biology (tissue culture) and molecular biology (recombinant DNA technology) are dis­cussed and the application thereof is advocated in a global approach to plant breeding.


Sign in / Sign up

Export Citation Format

Share Document