Effects of Tube Stiffness and Tubesheet Thickness on the Thermal Stress of the Tubes and Tubesheet

2011 ◽  
Vol 314-316 ◽  
pp. 1552-1555 ◽  
Author(s):  
Hui Fang Li ◽  
Cai Fu Qian ◽  
Xiao Dong Yu

In this paper, numerical simulation was carried out for the tube bundle of a float-head heat exchanger with concentration on the effects of tube stiffness and tubesheet thickness on the thermal stress of the tubes and tubesheet. It is found that decreasing the tube stiffness by using corrugated tubes can reduce the axial thermal stress at the tubes and, thus, decrease the possibility of strength failure of the connection between the tubes and tubesheet. Decreasing the tubesheet thickness can reduce the thermal stress at the tubesheet, which is meaningful for the heat exchangers with large temperature difference between the shell-side fluid and tube-side fluid and under small pressures.

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiuyi Liu ◽  
Caifu Qian ◽  
Huifang Li

Thermal stress is an important factor influencing the strength of a heat exchanger tubesheet. Some studies have indicated that, even in floating-head or U-tube heat exchangers, the thermal stress at the tubesheet is significant in magnitude. For exploring the value, distribution, and the influence factors of the thermal stress at the tubesheet of these kind heat exchangers, a tubesheet and triangle arranged tubes with the tube diameter of 25 mm were numerically analyzed. Specifically, the thermal stress at the tubesheet center is concentrated and analyzed with changing different parameters of the tubesheet, such as the temperature difference between tube-side and shell-side fluids, tubesheet diameter, thickness, and the tube-hole area ratio. It is found that the thermal stress of the tubesheet of floating-head or U-tube heat exchanger was comparable in magnitude with that produced by pressures, and the distribution of the thermal stress depends on the tube-hole area and the temperature inside the tubes. The thermal stress at the center of the tubesheet surface is high when tube-hole area ratio is very low. And with increasing the tube-hole area ratio, the stress first decreases rapidly and then increases linearly. A formula was numerically fitted for calculating the thermal stress at the tubesheet surface center which may be useful for the strength design of the tubesheet of floating-head or U-tube heat exchangers when considering the thermal stress. Numerical tests show that the fitted formula can meet the accuracy requirements for engineering applications.


Author(s):  
Xu Xie ◽  
Changhua Nie ◽  
Li Zhan ◽  
Hua Zheng ◽  
Pengzhou Li ◽  
...  

In this paper, the computational fluid dynamics (CFD) method is applied to the thermal-hydraulic analysis, while the porous media model is used to simplify AP1000 passive residual heat removal heat exchanger tube. The temperature as well as flow distribution in the secondary side of the heat exchanger are obtained, aiming at analysis of natural circulation ability. It can be noted that the fluid in the secondary side of heat exchanger moves driven by the effect of thermal buoyancy, forming the natural cycle, which takes away heat in tube bundle region. The heat transfer in water tank is mainly enhanced by vortex and turbulent flow, caused by the large resistance of tube bundle region as well as large temperature difference. This phenomenon is obvious especially for the recirculation of flow near the tube bundle. The enduring change of flow rate and direction enhance the heat transfer. Besides, the big temperature difference helps to increase the driving effect of natural circulation. Consequently, the heat transfer of the tank is enhanced by above mechanism. The results of this study contribute to the capacity analysis of passive residual heat removal of natural circulation system, providing valuable information for safe operation of AP1000.


2013 ◽  
Vol 860-863 ◽  
pp. 754-757
Author(s):  
Can Zheng ◽  
Fei Wang ◽  
Yong Gang Lei

A new type of helical baffles heat exchanger is presented in this paper. Comparative study, through numerical simulation, was undertook between the new helical baffles heat exchanger and segmental baffle board heat exchanger in shell side flow and heat exchange characteristics. Fluid medium in the shell side is air. At the same velocity in the same flow conditions, pressure drop of helical baffles heat exchangers fell by an average of 26.8% compared with segmental baffle board heat exchangers, and the unit pressure drop of the heat transfer ratio of helical baffles heat exchanger increased by an average of 40.6%.


2007 ◽  
Vol 129 (10) ◽  
pp. 1425-1431 ◽  
Author(s):  
B. Peng ◽  
Q. W. Wang ◽  
C. Zhang ◽  
G. N. Xie ◽  
L. Q. Luo ◽  
...  

Two shell-and-tube heat exchangers (STHXs) using continuous helical baffles instead of segmental baffles used in conventional STHXs were proposed, designed, and tested in this study. The two proposed STHXs have the same tube bundle but different shell configurations. The flow pattern in the shell side of the heat exchanger with continuous helical baffles was forced to be rotational and helical due to the geometry of the continuous helical baffles, which results in a significant increase in heat transfer coefficient per unit pressure drop in the heat exchanger. Properly designed continuous helical baffles can reduce fouling in the shell side and prevent the flow-induced vibration as well. The performance of the proposed STHXs was studied experimentally in this work. The heat transfer coefficient and pressure drop in the new STHXs were compared with those in the STHX with segmental baffles. The results indicate that the use of continuous helical baffles results in nearly 10% increase in heat transfer coefficient compared with that of conventional segmental baffles for the same shell-side pressure drop. Based on the experimental data, the nondimensional correlations for heat transfer coefficient and pressure drop were developed for the proposed continuous helical baffle heat exchangers with different shell configurations, which might be useful for industrial applications and further study of continuous helical baffle heat exchangers. This paper also presents a simple and feasible method to fabricate continuous helical baffles used for STHXs.


2021 ◽  
Vol 16 ◽  
pp. 145-152
Author(s):  
Farid Ahmed ◽  
Md Minaruzzaman Sumon ◽  
Muhtasim Fuad ◽  
Ravi Gugulothu ◽  
AS Mollah

Heat exchangers are almost used in every industry. Among them, shell and tube heat exchangers are covering around 32% of the total heat exchanger. Numerical simulation of the Computational models is playing an important role for the prototypes including the Heat Exchanger Models for the improvement in modeling. In this study, the CFD analysis of parallel and counter flow shell and tube heat exchanger was performed. Following project, looked into the several aspects and these are the temperature, velocity, and pressure drop and turbulence kinetic energy along with the heat exchanger length. Hot water was placed in tube side and cold water was placed in shell side of the heat exchanger. Shell side cold temperature was increasing along the heat exchanger length. On the other side, tube side hot water temperature was decreasing along the tube length. This effect was more significance in counter flow rather than the parallel flow. Velocity was more fluctuating in the shell side due to presence of the baffles. Also following the same reason, pressure drop was higher in the shell side cold water rather than the tube side hot water. To measure the turbulence effect, turbulence kinetic energy was determined. Turbulence was decreasing first part of the shell and tube heat exchanger. But, it was increasing along through the rest part heat exchanger. All these observations and the outcomes are evaluated and then further analyzed


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 594
Author(s):  
Tao Zhou ◽  
Bingchao Chen ◽  
Huanling Liu

In recent years, in order to obtain a radiator with strong heat exchange capacity, researchers have proposed a lot of heat exchangers to improve heat exchange capacity significantly. However, the cooling abilities of heat exchangers designed by traditional design methods is limited even if the geometric parameters are optimized at the same time. However, using topology optimization to design heat exchangers can overcome this design limitation. Furthermore, researchers have used topology optimization theory to designed one-to-one and many-to-many inlet and outlet heat exchangers because it can effectively increase the heat dissipation rate. In particular, it can further decrease the hot-spot temperature for many-to-many inlet and outlet heat exchangers. Therefore, this article proposes novel heat exchangers with three inlets and one outlet designed by topology optimization to decrease the fluid temperature at the outlet. Subsequently, the effect of the channel depth on the heat exchanger design is also studied. The results show that the type of exchanger varies with the channel depth, and there exists a critical depth value for obtaining the minimum substrate temperature difference. Then, the flow and heat transfer performance of the heat exchangers are numerically investigated. The numerical results show that the heat exchanger derived by topology optimization with the minimum temperature difference as the goal (Model-2) is the best design for flow and heat transfer performance compared to other heat sink designs, including the heat exchanger derived by topology optimization having the average temperature as the goal (Model-1) and conventional straight channels (Model-3). The temperature difference of Model-1 can be reduced by 37.5%, and that of Model-2 can be decreased by 62.5% compared to Model-3. Compared with Model-3, the thermal resistance of Model-1 can be reduced by 21.86%, while that of Model-2 can be decreased by 47.99%. At room temperature, we carried out the forced convention experimental test for Model-2 to measure its physical parameters (temperature, pressure drop) to verify the numerical results. The error of the average wall temperature between experimental results and simulation results is within 2.6 K, while that of the fluid temperature between the experimental and simulation results is within 1.4 K, and the maximum deviation of the measured Nu and simulated Nu was less than 5%. This indicated that the numerical results agreed well with the experimental results.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


1992 ◽  
Vol 114 (1) ◽  
pp. 124-131 ◽  
Author(s):  
F. Osweiller

For about 40 years most tubesheet exchangers have been designed according to the standards of TEMA. Partly due to their simplicity, these rules do not assure a safe heat-exchanger design in all cases. This is the main reason why new tubesheet design rules were developed in 1981 in France for the French pressure vessel code CODAP. For fixed tubesheet heat exchangers, the new rules account for the “elastic rotational restraint” of the shell and channel at the outer edge of the tubesheet, as proposed in 1959 by Galletly. For floating-head and U-tube heat exchangers, the approach developed by Gardner in 1969 was selected with some modifications. In both cases, the tubesheet is replaced by an equivalent solid plate with adequate effective elastic constants, and the tube bundle is simulated by an elastic foundation. The elastic restraint at the edge of the tubesheet due the shell and channel is accounted for in different ways in the two types of heat exchangers. The purpose of the paper is to present the main basis of these rules and to compare them to TEMA rules.


2013 ◽  
Vol 655-657 ◽  
pp. 461-464 ◽  
Author(s):  
Su Fang Song

The three-dimensional model of heat exchangers with continuous helical baffles was built. The fluid flow dynamics and heat transfer of shell side in the helical baffled heat exchanger were simulated and calculated. The velocity, pressure and temperature distributions were achieved. The simulation shows that with the same baffle pitch, shell-side heat transfer coefficient increased by 25% and the pressure drop decreases by 18% in helical baffled heat exchanger compared with segmental helical baffles. With the analyzing of the flow and heat transfer in heat exchanger in 5 different inclination angles from 11°to 21°, it can be found that both shell side heat transfer coefficient and pressure drop will reduce respectively by 86% and 52% with the increases 11°to 21°of the inclination angles. Numerical simulation provided reliable theoretical reference for further engineering research of heat exchanger with helical baffles.


Sign in / Sign up

Export Citation Format

Share Document