Basis of the Tubesheet Heat Exchanger Design Rules Used in the French Pressure Vessel Code

1992 ◽  
Vol 114 (1) ◽  
pp. 124-131 ◽  
Author(s):  
F. Osweiller

For about 40 years most tubesheet exchangers have been designed according to the standards of TEMA. Partly due to their simplicity, these rules do not assure a safe heat-exchanger design in all cases. This is the main reason why new tubesheet design rules were developed in 1981 in France for the French pressure vessel code CODAP. For fixed tubesheet heat exchangers, the new rules account for the “elastic rotational restraint” of the shell and channel at the outer edge of the tubesheet, as proposed in 1959 by Galletly. For floating-head and U-tube heat exchangers, the approach developed by Gardner in 1969 was selected with some modifications. In both cases, the tubesheet is replaced by an equivalent solid plate with adequate effective elastic constants, and the tube bundle is simulated by an elastic foundation. The elastic restraint at the edge of the tubesheet due the shell and channel is accounted for in different ways in the two types of heat exchangers. The purpose of the paper is to present the main basis of these rules and to compare them to TEMA rules.

Author(s):  
Venkata Rajesh Saranam ◽  
Peter Carter ◽  
Kyle Rozman ◽  
Ömer Dogan ◽  
Brian K. Paul

Abstract Hybrid compact heat exchangers (HCHEs) are a potential source of innovation for intermediate heat exchangers in nuclear industry, with HCHEs being designed for Gen-IV nuclear power applications. Compact heat exchangers are commonly fabricated using diffusion bonding, which can provide challenges for HCHEs due to resultant non-uniform stress distributions across hybrid structures during bonding, leading to variations in joint properties that can compromise performance and safety. In this paper, we introduce and evaluate a heuristic for determining whether a feasible set of diffusion bonding conditions exist for producing HCHE designs capable of meeting regulatory requirements under nuclear boiler and pressure vessel codes. A diffusion bonding model for predicting pore elimination and structural analyses are used to inform the heuristic and a heat exchanger design for 316 stainless steel is used to evaluate the efficacy of the heuristic to develop acceptable diffusion bonding parameters. A set of diffusion bonding conditions were identified and validated experimentally by producing various test coupons for evaluating bond strength, ductility, porosity, grain size, creep rupture, creep fatigue and channel deviation. A five-layer hybrid compact heat exchanger structure was fabricated and tensile tested demonstrating that the bonding parameters satisfy all criteria in this paper for diffusion bonding HCHEs with application to the nuclear industry.


Author(s):  
Michel De Paepe ◽  
Christophe T’Joen ◽  
Arnold Janssens ◽  
Marijke Steeman

Earth-air heat exchangers are often used for (pre)heating or (pre)cooling of ventilation air in low energy or passive house standard buildings. Several studies have been published in the passed about the performance of these earth-air heat exchangers [1–8]. Often this is done in relation to the building energy use. Several software codes are available with which the behaviour of the earth-air heat exchanger can be simulated. De Paepe and Janssens published a simplified design methodology for earth-air heat exchangers, based on thermal to hydraulic performance optimisation [7]. Through dynamic simulations and measurements it was shown that the methodology is quite conservative [9–10]. Hollmu¨ller added an earth-air heat exchanger model to TRNSYS [11]. In stead of using earth-air heat exchangers, earth-water heat exchangers are now getting more attention. In this system the ventilation air is indirectly cooled/heated with the water flow in a fin-tube heat exchanger in the inlet of the ventilation channel. The water-glycol mixture transfers heat with the earth by flowing through e.g. a polyethylene tube. In the second part of this paper a design methodology is first derived and then applied to this type of system.


1984 ◽  
Vol 106 (3) ◽  
pp. 279-285
Author(s):  
F. R. Weiner

This paper describes the analysis and design of the five kinds of heat exchangers used in the thermal storage subsystem of the 10 MWe Solar Central Receiver Pilot Plant, now becoming more known as “Solar One.” The paper discusses the practices and standards used in the designs of the heat exchangers, lists the heat exchanger design requirements, and discusses the process conditions. The design assumptions and constraints, the geometrical considerations, and the tradeoff studies that were conducted to optimize the designs are also discussed. A description of each heat exchanger reveals the final design solution. Novel and unique features of a power plant that must operate on a daily sun-cycle are identified.


Author(s):  
Torsten Berning

This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft Excel™. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can be used to reduce the number of hardware iterations in heat exchanger design.


2017 ◽  
Vol 71 (5) ◽  
pp. 439-449
Author(s):  
Nikola Zlatkovic ◽  
Divna Majstorovic ◽  
Mirjana Kijevcanin ◽  
Emila Zivkovic

Plate heat exchanger is a type of heat exchanger that uses corrugated metal plates to transfer heat between two fluids. The plate corrugations are designed to achieve turbulence across the entire heat transfer area thus producing the highest possible heat transfer coefficients while allowing close temperature approaches. Subsequently, this leads to a smaller heat transfer area, smaller units and in some cases, fewer heat exchangers. In this work, an application for thermal and hydraulic computations of plate heat exchangers had been developed using Sharp Develop, an open source programming platform. During the development process, several literature methods and correlations for calculation of heat transfer coefficient and pressure drop in a plate heat exchanger have been tested and the selected four methods: Martin, VDI, Kumar and Coulson and Richardson have been incorporated into the software. The structure of the software is visually presented through several windows: a window for inserting input data, windows for showing the results of computation by each of the methods, a window for showing comparative analysis of the most important computation results obtained by all of the used methods and a help window for demonstrating the working principle of plate heat exchanger.


2019 ◽  
Vol 5 ◽  
pp. 12
Author(s):  
Uğur Köse ◽  
Ufuk Koç ◽  
Latife Berrin Erbay ◽  
Erdem Öğüt ◽  
Hüseyin Ayhan

In this study, conceptual design for primary heat exchanger of the Molten Salt Fast Reactor is made. The design was carried out to remove the produced heat from the reactor developed under the SAMOFAR project. Nominal power of the reactor is 3 GWth and it has 16 heat exchangers. There are several requirements related to the heat exchanger. To sustain the steady-state conditions, heat exchangers have to transfer the heat produced in the core and it has to maintain the temperature drop as much as the temperature rise in the core due to the fission. It should do it as fast as possible. It must also ensure that the fuel temperature does not reach the freezing temperature to avoid solidification. In doing so, the fuel volume in the heat exchanger must not exceed the specified limit. Design studies were carried out taking into account all requirements and final geometric configurations were determined. Plate type heat exchanger was adopted in this study. 3D CFD analyses were performed to investigate the thermal-hydraulic behavior of the system. Analyses were made by ANSYS-Fluent commercial code. Results are in a good agreement with limitations and requirements specified for the reactor designed under the SAMOFAR project.


2001 ◽  
Author(s):  
W. Jerry Bowman ◽  
Daniel Maynes

Abstract A review of the literature in the area of micro heat exchangers is presented to provide a concise overview of the recent advances in this field of study. The review is divided into six sections. The first section reviews research focused on understanding friction and heat transfer in microchannels. The second section deals with heat exchanger design, optimization and comparison studies. The third section deals with fabrication methods used for constructing micro heat exchangers. The fourth section reviews applications of micro heat exchangers. The last two sections of the paper deal with miscellaneous topics and other reviews on the subject. The total review focuses on advances made after the early 1990’s.


2000 ◽  
Vol 122 (3) ◽  
pp. 317-324 ◽  
Author(s):  
Francis Osweiller

French CODAP rules devoted to tubesheet heat exchangers were adopted in the 1990s, for the European Unfired Pressure Vessel Standard (UPV). ASME Section VIII—Div. 1 rules issued in July 1998 are based on a similar approach. At the initiative of the author, who is a member of CODAP, UPV, and ASME respective Committees on Heat Exchangers, it has been decided to make the tubesheet design rules of these three codes as consistent as possible. This paper presents the various aspects of this harmonization that covers both the theoretical basis of the rules and the editorial aspect (use of common notations, common tubesheet configurations, common terminology, etc). The main analytical basis of these rules, and their differences are explained. Numerical benchmark calculations, performed on real heat exchangers, outline the significant improvements due to the consistency, with a comparison to current TEMA rules. Use of these common rules in the coming years, both in US and Europe, is discussed in the general context of globalization of the market. [S0094-9930(00)01003-9]


2005 ◽  
Vol 129 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Yan Su ◽  
Jane H. Davidson

A scale analysis of the transient discharge of a fully mixed thermal storage vessel with an immersed single-tube heat exchanger is extended to provide a generalized expression for the transient natural convection Nusselt number for heat exchangers comprising many tubes. The transient Nusselt number is expressed in terms of the Rayleigh number at the initiation of the discharge (or charge) process and easily measured geometric parameters. Nusselt numbers measured for a 240-tube heat exchanger immersed in a fully mixed 126L storage vessel are well correlated in the proposed form. The applicability of the approach to thermally stratified storage fluids is evaluated for both a single-tube and the 240-tube bundle. For heat exchangers of practical size for solar systems, for example the 240-tube bundle, buoyancy driven flow within the storage is sufficient to mix an initially stratified fluid. In this case, Nusselt numbers during the discharge process are predicted accurately by the proposed transient formulation. However, if the storage fluid remains stratified during discharge, as is the case for an initially stratified vessel with a single-tube heat exchanger, the transient formulation is not recommended.


Sign in / Sign up

Export Citation Format

Share Document