Ammonium Removal from Aqueous Solutions Using an Ammonium Ion-Exchange Material, the Equilibrium Study

2011 ◽  
Vol 322 ◽  
pp. 102-107
Author(s):  
Lu Hua You ◽  
Xin Tan ◽  
Qiong Qiong Liu ◽  
Lin Zhao

This article investigates the removal of ammonium from aqueous solutions using the ammonium ion-exchange material prepared by the modified kaolin. Batch tests were performed under a range of conditions to assess the effect of initial solution concentration, contact time and solution PH on the performance and capacity of the media for this application. The findings show that increasing initial solution concentration and contact time provide the best performance at an optimum PH of between 6 and 7 and the maximum ammonium adsorption capacity reaches at 79mgNH4+g-1 under the experimental conditions studied. Five isotherm models were used to describe the isotherm data. Three-parameter isotherm models (Redlich–Peterson and Langmuir–Freundlich) prove a better fit than two-parameter isotherm models (Langmuir, Freundlich and Temkin). These results indicate that the ammonium ion-exchange material is a promising material for cost-effective removal of ammonium from wastewater.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ángel Villabona-Ortiz ◽  
Candelaria Tejada-Tovar ◽  
Ángel Gonzalez-Delgado ◽  
Adriana Herrera-Barros ◽  
Gina Cantillo-Arroyo

Nowadays, biomass has been employed to prepare biosorbents for heavy metals uptake; however, further disposal of polluted material has limited its application. In this work, nickel and lead removal was performed using yam peels and the resulting polluted biomass was mixed with concrete to produce bricks. The biomass was characterized by FT-IR analysis for testing functional groups diversification before and after adsorption process. The effect of adsorbent dosage, temperature, and initial solution concentration was evaluated to select suitable values of these parameters. Adsorption results were adjusted to kinetic and isotherm models to determine adsorption mechanism. Desorption experiments were also performed to determine the appropriate desorbing agent as well as its concentration. Immobilization technique of cement-based solidification/stabilization was applied and the polluted biomass was incorporated to concrete bricks at 5 and 10%. Mechanical resistance and leaching tests were carried out to analyze the suitability of heavy metals immobilization. The suitable values for dosage, temperature, and initial solution concentration were 0.5 g/L, 40°C and 100 ppm, respectively. The kinetic model that best fitted experimental results was pseudo-second order indicating a dominant physicochemical interaction between the two phases. The highest desorption yields were found in 52.47 and 74.84% for nickel and lead ions. The concrete bricks exhibited compression resistance above 5 MPa and all the leachate reported concentrations below the environmental limit. These results suggested that nickel and lead immobilization using concrete bricks is a good alternative to meet disposal problems of contaminated biomass.


2018 ◽  
Vol 67 (3) ◽  
pp. 279-290 ◽  
Author(s):  
Haider M. Zwain ◽  
Mohammadtaghi Vakili ◽  
Irvan Dahlan

Abstract A novel RHA/PFA/CFA composite adsorbent was synthesized from rice husk ash (RHA), palm oil fuel ash (PFA), and coal fly ash (CFA) by modified sol-gel method. Effect of different parameters such as adsorbent dosage, contact time, and pH were studied using batch experiment to optimize the maximum zinc (Zn2+) and nickel (Ni2) adsorption conditions. Results showed that the maximum adsorption condition occurred at adsorbent amount of 10 g/L, contact time of 60 min, and pH 7. At this condition, the removal efficiencies were 81% and 61% for Zn2+ and Ni2+, in which the adsorption capacities (qmax) were 21.74 mg/g and 17.85 mg/g, respectively. Adsorption behavior of RHA/PFA/CFA composite adsorbent was studied through the various isotherm models at different adsorbent amounts. The results indicated that the Freundlich isotherm model gave an excellent agreement with the experimental conditions. Based on the results obtained from the kinetic studies, pseudo-second-order was suitable for the adsorption of Ni2+ and Zn2+, compared to the pseudo-first-order model. The results presented in this study showed that RHA/PFA/CFA composite adsorbent successfully adsorbed Zn2+ and Ni2.


2019 ◽  
Vol 6 (2) ◽  
pp. 66-74 ◽  
Author(s):  
Raziyeh Hosseini ◽  
Mohammad Hossein Sayadi ◽  
Hossein Shekari

The research was conducted with an aim to assess the efficiency of copper oxide nanoparticles as an adsorbent to remove Ni and Cr. The effect of pH, adsorbent dosage, contact time, initial concentration of metals (Ni and Cr) on the adsorption rate was evaluated and removal of these elements from aqueous solutions was measured using Atomic Absorption Spectrum System (Conter AA700). Moreover, the kinetic and isotherm besides thermodynamic adsorption models were assessed. The highest Ni and Cr removal rate occurred at an optimal pH of 7, and an initial concentration of 30 mg/L, a time period of 30 minutes, and 1 g/L of copper oxide nanoparticles. In fact, with the increase of adsorbent dosage and contact time, the removal efficiency increased and with initial concentration increase of Ni and Cr ions, the removal efficiency reduced. The correlation coefficient of isotherm models viz. Langmuir, Freundlich, Temkin, Redlich-Peterson, and Koble-Corrigan showed that Ni and Cr adsorption via copper oxide nanoparticles better follows the Langmuir model in relation to other models. The results showed that kinetic adsorption of Ni and Cr via copper oxide nanoparticles follows the second order pseudo model with correlation coefficients above 0.99. In addition, the achieved thermodynamic constants revealed that the adsorption process of metals (i.e., Ni and Cr) via copper oxide nanoparticles was endothermic and spontaneous and the reaction enthalpy values for these metals were 17.727 and 11.862 kJ/mol, respectively. In conclusion, copper oxide nanoparticles can be used as effective and environmentally compatible adsorbents to remove Ni and Cr ions from the aqueous solutions


2018 ◽  
Vol 18 (4) ◽  
pp. 724
Author(s):  
Rahmah Hashim Abdullah ◽  
Amjed Mirza Oda ◽  
Alaa Rasheed Omran ◽  
Ameer Salem Mottaleb ◽  
Teeba Mudhefer Mubarakah

The performance sawdust as a low cost adsorbent to remove Direct Blue 85 (DB85) dye from aqueous solutions has been evaluated. The characteristic of sawdust analyzed by FTIR and XRD. The removal percentage of this dye was studied at different experimental conditions such as contact time, adsorbent dosage, particle size, temperature, and pH. The optimum removal percentage value was found at pH 2.Temperature also has a positive impact on adsorption, where the adsorption of this dye on the sawdust increased as the temperature increased. High values of correlation coefficient signified that the adsorption of (DB85) dye on the surface of sawdust obey Langmuir and Freundlich adsorption isotherms.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


2021 ◽  
Author(s):  
Mahsa Golghasemi Sorkhabi ◽  
Hassan Aghdasinia ◽  
Fatemeh Notghi Oskui ◽  
Afzal Karimi ◽  
Mortaza Golizadeh

Abstract Simultaneous removal of Cr^3+ and acidic dye from model tannery wastewater was investigated using local nano clay modified by 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) surfactant. X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), carbon, hydrogen, nitrogen and sulfur analysis (CHNS), Brunauer-Emmet-Teller (BET) analysis and pH of zero point charge (pH_ZPC) analyses were carried out for characterization of the adsorbent, and adsorptive properties of the modified clay were investigated by batch experiments. The effects of essential parameters, such as adsorbent dosage, initial solution pH, initial solution concentration, contact time, and temperature, were studied. Maximum adsorption values (99.74% for Cr^3+ and 83.26% for dye) were obtained in the following conditions: pH of 4, initial concentration of 100 mg/L, adsorbent dosage of 15000 mg/L, contact time of 30 min. The effect of contaminants’ concentration was also investigated through response surface methodology (RSM), central composite face-centered (CCF) design and an empirical model was presented. The results of kinetic models’ studies demonstrated that simultaneous adsorption of contaminants follows the pseudo-second-order model, and the adsorption data of single and binary solutions fitted nonlinearly to isotherm models showed that the adsorption of Cr (III) from binary and single solutions follow Langmuir and Dubinin-Radushkevitch (D-R) isotherms, respectively. Adsorption of dye from both single and binary solutions follows Redlich- Peterson (R-PT) isotherm. Maximum adsorption capacities were obtained to be 193.1390 mg/g and 144.1782 mg/g for Cr^3+ and dye, respectively. Synergistic and antagonistic adsorptions were observed in binary solutions.


2003 ◽  
Vol 58 (7) ◽  
pp. 672-677 ◽  
Author(s):  
Thomas Roßmeier ◽  
Nikolaus Korber

The compounds (NH4)3AsS4· 5 NH3 (1) and (NH4)3SbS4· 8 NH3 (2) were prepared by the reaction of Na3AsS4 and Na3SbS4 with a proton-charged ion exchange material in liquid ammonia and characterized by low temperature single crystal X-ray structure analysis. The ammonium-ammoniates show H3N-H···N-hydrogen bonds between the ammonium ion and ammonia molecules ranging from 1.86 to 2.55 Å (DHA-angles: 145 - 173°) and H3N-H···S-bonds to the thioanions between 2.36 and 2.97 Å (DHA-angles: 130 - 176°). The former of the interactions are responsible for the formation of [(NH3)2H]+, [(NH3)3H]+ and [(NH3)4H]+-complexes, the last two of which were characterized by X-ray analysis for the first time.


2019 ◽  
Vol 54 (3) ◽  
pp. 249-256 ◽  
Author(s):  
Sahra Dandil ◽  
Deniz Akin Sahbaz ◽  
Caglayan Acikgoz

Abstract Synthetic dyes are harmful to human beings, and the removal of colour from process or waste effluents is environmentally important. Crystal violet (CV) is a typical triphenylmethane dye, which is widely used in textile dyeing and paper printing industries. The present study shows that granulated and calcinated waste mussell shells (CWMS) can be used as a potential low-cost and locally available adsorbent for the removal of CV from aqueous solutions. The adsorption capacities of the CWMS for CV were investigated with respect to the effect of pH value, adsorbent dosage, contact time, initial dye concentration and temperature. Process variables were optimized, and a maximum dye adsorption of 482.0 mg/g was achieved at pH 6, 0.2 g/L adsorbent dosage, 220 min contact time and 25 °C for dye initial concentration of 100 mg/L. Adsorption kinetics and isotherms were followed by the pseudo-second order model and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of CV was spontaneous and endothermic in nature. The results indicated that the CWMS as a new adsorbent had the potential to serve in wastewater treatment applications, especially in the removal of CV from aqueous solutions.


2019 ◽  
Author(s):  
Chem Int

The objective of this study is to evaluate the performance and capacities of the bentonite of Maghnia, modified with benzyldimethyltetradecylammonium chloride, to remove the organic pollutant 2,4,6-Trichlorophenol (TCP). The modified sample was studied by X-ray diffraction (XRD) technique, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) methods. The best removal rate (99.52%) was obtained at 19°C, pH 4, solution concentration of 50 mg/L, stirring speed of 180 rpm and contact time of 60 min. The results were well fitted by both Langmuir and Freundlich isotherm models and the pseudo-second-order is the best model to describe the process.


Sign in / Sign up

Export Citation Format

Share Document