scholarly journals Adsorption of Nickel and Chromium From Aqueous Solutions Using Copper Oxide Nanoparticles: Adsorption Isotherms, Kinetic Modeling, and Thermodynamic Studies

2019 ◽  
Vol 6 (2) ◽  
pp. 66-74 ◽  
Author(s):  
Raziyeh Hosseini ◽  
Mohammad Hossein Sayadi ◽  
Hossein Shekari

The research was conducted with an aim to assess the efficiency of copper oxide nanoparticles as an adsorbent to remove Ni and Cr. The effect of pH, adsorbent dosage, contact time, initial concentration of metals (Ni and Cr) on the adsorption rate was evaluated and removal of these elements from aqueous solutions was measured using Atomic Absorption Spectrum System (Conter AA700). Moreover, the kinetic and isotherm besides thermodynamic adsorption models were assessed. The highest Ni and Cr removal rate occurred at an optimal pH of 7, and an initial concentration of 30 mg/L, a time period of 30 minutes, and 1 g/L of copper oxide nanoparticles. In fact, with the increase of adsorbent dosage and contact time, the removal efficiency increased and with initial concentration increase of Ni and Cr ions, the removal efficiency reduced. The correlation coefficient of isotherm models viz. Langmuir, Freundlich, Temkin, Redlich-Peterson, and Koble-Corrigan showed that Ni and Cr adsorption via copper oxide nanoparticles better follows the Langmuir model in relation to other models. The results showed that kinetic adsorption of Ni and Cr via copper oxide nanoparticles follows the second order pseudo model with correlation coefficients above 0.99. In addition, the achieved thermodynamic constants revealed that the adsorption process of metals (i.e., Ni and Cr) via copper oxide nanoparticles was endothermic and spontaneous and the reaction enthalpy values for these metals were 17.727 and 11.862 kJ/mol, respectively. In conclusion, copper oxide nanoparticles can be used as effective and environmentally compatible adsorbents to remove Ni and Cr ions from the aqueous solutions

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1161
Author(s):  
Somayeh Rahdar ◽  
Abbas Rahdar ◽  
Mostafa Sattari ◽  
Laleh Divband Hafshejani ◽  
Athanasia K. Tolkou ◽  
...  

Dyes are known as one of the most dangerous industrial pollutants which can cause skin diseases, allergy, and provoke cancer and mutation in humans. Therefore, one of the important environmental issues is the effective removal of dyes from industrial wastewater. In the current work, BaFe12O19/CoFe2O4@polyethylene glycol (abbreviated as BFO/CFO@PEG) nanocomposite was synthesized and evaluated regarding its capacity for adsorptive removal of a model dye Acid Blue 92 (denoted as AB92) from aqueous solutions. The characteristics of the prepared nanocomposite was determined by tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), vibration sample magnetization (VSM), and Fourier transform infrared spectroscopy (FTIR). The effects of conditional parameters including pH (2–12), initial concentration of dye (20–100 mg/L), adsorbent dosage (0.02–0.1 g/L) and contact time (0-180 min) on the adsorption of dye were investigated and then optimized. The results indicated that with the increase of the adsorbent dosage from 0.02 to 0.1 g/L, the removal efficiency increased from 74.1% to 78.6%, and the adsorbed amount decreased from 148.25 to 31.44 mg/g. The maximum removal efficiency (77.54%) and adsorption capacity (31.02 mg/g) were observed at pH 2. Therefore, the general optimization conditions revealed that the maximum adsorption efficiency of dye was obtained in condition of initial concentration of 20 mg/L, contact time of 1 h and pH of solution equal 2. The adsorption isotherm and kinetic data were evaluated using a series of models. The pseudo-second order kinetic model and Freundlich isotherm model show the best fitting with experimental data with R2∼0.999.


2012 ◽  
Vol 724 ◽  
pp. 61-64
Author(s):  
Ying Li ◽  
Xiao Yan Lin ◽  
Zhe Chen ◽  
Xue Guang Luo ◽  
Wei Li Zuo

A composite membrane of thermoplastic carboxymethyl cellulose (TCMC) /PLA was prepared by electrospinning process, and crossliked by epichlorohydrin solution at different temperature. The cross-linking temperature was optimized by characterizing the morphology and tensile strength of the film. The optimal cross-linking temperature was 50°C. A composite membrane was used to remove Cu2+ from aqueous solutions, and the effects of initial concentration of Cu2+ and contact time on the removal efficiency of Cu2+ were investigated. The removal efficiency of Cu2+ was 13.78%, at the initial concentration of 40 mg·L-1 and contact time of 30s.


2019 ◽  
Vol 54 (3) ◽  
pp. 249-256 ◽  
Author(s):  
Sahra Dandil ◽  
Deniz Akin Sahbaz ◽  
Caglayan Acikgoz

Abstract Synthetic dyes are harmful to human beings, and the removal of colour from process or waste effluents is environmentally important. Crystal violet (CV) is a typical triphenylmethane dye, which is widely used in textile dyeing and paper printing industries. The present study shows that granulated and calcinated waste mussell shells (CWMS) can be used as a potential low-cost and locally available adsorbent for the removal of CV from aqueous solutions. The adsorption capacities of the CWMS for CV were investigated with respect to the effect of pH value, adsorbent dosage, contact time, initial dye concentration and temperature. Process variables were optimized, and a maximum dye adsorption of 482.0 mg/g was achieved at pH 6, 0.2 g/L adsorbent dosage, 220 min contact time and 25 °C for dye initial concentration of 100 mg/L. Adsorption kinetics and isotherms were followed by the pseudo-second order model and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of CV was spontaneous and endothermic in nature. The results indicated that the CWMS as a new adsorbent had the potential to serve in wastewater treatment applications, especially in the removal of CV from aqueous solutions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Aamir Abbas ◽  
Basim Ahmed Abussaud ◽  
Ihsanullah ◽  
Nadhir A. H. Al-Baghli ◽  
Marwan Khraisheh ◽  
...  

In this paper, carbon nanotubes (CNTs) impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
T. Shanthi ◽  
V. M. Selvarajan

Carbon prepared from leaves of henna (Lawsonia inermis) was used to study the adsorption of Cr(VI) and Cu(II) ions from their aqueous solutions. The experimental conditions which include pH, contact time, initial concentration, and adsorbent dosage on the metal removal were investigated. The capacity of adsorption depends on pH value; it increases with an increase in pH value from 1 to 7 and then decreases. The highest percentage of metal removal was achieved in the adsorbent dosage of 0.7 g and at an initial concentration of 100 ppm metal ion. The adsorption isotherm studies revealed that data was confirmed with both the Langmuir and Freundlich isotherm models. The removal percentage was found to be higher for Cu(II) when compared with Cr(VI). The potential of carbon prepared from henna leaves for the removal of these two solutions containing heavy metals was substantiated.


2019 ◽  
Vol 6 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Dariush Naghipour ◽  
Abdoliman Amouei ◽  
Kamran Taher Ghasemi ◽  
Kamran Taghavi

Background: Metoprolol (MTP) with its low biodegradability is one of the most dominant micropollutant in the effluent of wastewater treatment plants. The aim of this study was to investigate the removal of metoprolol from aqueous solutions by the activated carbon prepared from pine cones. Methods: The pine cones were activated using thermal activation method. Characteristics of the adsorbent were determined using Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). In this study, the influent of different parameters such as pH, contact time, initial concentrations of metoprolol, adsorbent dose, temperature, adsorption isotherms, and kinetics were investigated. Results: The maximum removal efficiency of MTP (89.2%) was obtained at pH=8.5, adsorbent dose=1.5 g, contact time=60 min, and initial concentration=50 mg/L. By increasing the adsorbent dose, the removal efficiency also increased, but the adsorption capacity decreased, however, by increasing the initial concentration, the removal efficiency decreased, but the adsorption capacity increased. The isotherm experimental data for metoprolol was best fitted using the Langmuir model, and kinetic data were better described by pseudo-second-order kinetic model. The thermodynamic study indicated that the adsorption of MTP by the adsorbent was feasible, spontaneous, and endothermic. Conclusion: MTP removal by the activated carbon prepared from pine cones showed that this natural adsorbent is appropriate for removal of metoprolol from aqueous solutions regarding cost, efficiency, and production method.


Author(s):  
Nada M. Al-Ananzeh

Abstract Dairy plants produce 1 to 4 liters of wastewater per one liter of processed milk. The wastewater contains high values of COD and BOD concentrations, in addition to high levels of dissolved solids. In this study, synthesized copper oxide nanoparticles (CuONPs) coupled with Sophora Japonica fruit, were used as an adsorbent, for the first time, to treat the effluent of dairy plants in a batch adsorption process. The analysis techniques, FTIR, XRD and SEM were utilized to characterize the adsorbent. The COD removal, using (CuONPs)-based adsorbent, was investigated by varying contact time, masses of the adsorbent, initial COD value and temperatures. The optimum conditions for highest removal percentage were contact time of 120 minutes, a temperature of 25 °C, pH value of 7.5, and 1 g of adsorbent. The initial COD values used were in the range of 100–700 ppm. The COD percent removal was in the range of 77 to 95%. Freundlich isotherm exhibited the best fitting for the results (R2 = 0.998) with a favorable spontaneous exothermic adsorption process. Based on the calculated normalized deviation value, the modified diffusion model, intra-diffusion, and pseudo-second order kinetics all showed very good fitting for the adsorption data as indicated by the kinetics study.


2010 ◽  
Vol 7 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Reza Shokoohi ◽  
Vahid Vatanpoor ◽  
Mansuor Zarrabi ◽  
Akram Vatani

Adsorption process by activated carbon is widely used for removal of dyes. Because of economical limits, activated carbon derived from low cost materials seem to be economical. The aim of this work is preparation of activated carbon from poplar wood and investigation of its ability to removal of (AR18) dye. In this work, we prepared the activated carbon by chemical activation method in electric furnace. In addition we have investigated effect of various parameters such as pH, contact time, dye concentration and adsorbent dosage on dye removal. Langmuir and Freundlich isotherm models have been investigated. Pseudo-first order, pseudo-second order and modified pseudo-first order kinetic models have been used for experimental data. The results showed that removal efficiency was increased with increasing of adsorbent dosage, contact time and decreasing of pH, but with increasing of dye concentration, the removal efficiency was decreased. Adsorption isotherm models showed that Langmuir isotherm model was best fitted onto collected data (r2>0.978). In addition, kinetic models showed that sorption of AR18 onto activated carbon prepared from poplar wood follows the pseudo-first order model (r2>0.9758).


2018 ◽  
Vol 2017 (3) ◽  
pp. 636-649 ◽  
Author(s):  
Bahare Dehdashti ◽  
Mohammad Mehdi Amin ◽  
Hamidreza Pourzamani ◽  
Lida Rafati ◽  
Mehdi Mokhtari

Abstract The aim of study is removal of atenolol from aqueous solutions by multiwalled carbon nanotubes modified with ozone. The design of the experiment was adopted across four levels with the L16 matrix arrangement. The factors influencing atenolol adsorption include changes in the pH value, contact time, the dose of the modified multiwall carbon nanotube, and the initial concentration of atenolol in the solution; these factors were evaluated along with the extent of their influence on removal efficiency. Data analyses were performed by the Design Expert 6 software. The results indicated that the pH, contact time, adsorbent dose, and the initial concentration were 7, 20 min, 0.15 g/L and 1 mg/L, respectively. In this state, the removal efficiency was calculated to be 75.79%. The maximum adsorption capacity was obtained as 5.05 mg/g under optimal conditions. The data were analyzed using adsorption models obtained from the isotherm fitting tool software. The results suggested that the data had a greater congruence with the Freundlich model (corrected Akaike information criterion = 2.58). Furthermore, the kinetics of the reactions followed pseudo second order kinetics (R2 = 0.95). Based on this study, it can be concluded that modified multiwall carbon nanotubes enjoy high potential and efficiency as adsorbents for the removal of atenolol from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document