Adsorption of 2,4,6-trichlorophenol on bentonite modified with benzyldimethyltetradecylammonium chloride

2019 ◽  
Author(s):  
Chem Int

The objective of this study is to evaluate the performance and capacities of the bentonite of Maghnia, modified with benzyldimethyltetradecylammonium chloride, to remove the organic pollutant 2,4,6-Trichlorophenol (TCP). The modified sample was studied by X-ray diffraction (XRD) technique, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) methods. The best removal rate (99.52%) was obtained at 19°C, pH 4, solution concentration of 50 mg/L, stirring speed of 180 rpm and contact time of 60 min. The results were well fitted by both Langmuir and Freundlich isotherm models and the pseudo-second-order is the best model to describe the process.

2020 ◽  
Vol 49 (1) ◽  
pp. 55-62
Author(s):  
Akbar Eslami ◽  
Zahra Goodarzvand Chegini ◽  
Maryam Khashij ◽  
Mohammad Mehralian ◽  
Marjan Hashemi

Purpose A nanosilica adsorbent was prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET. Design/methodology/approach The optimum conditions for the highest adsorption performance were determined by kinetic modeling. The adsorbent was used for the adsorption of acetaminophen (ACT), and the parameters affecting the adsorption were discussed like pH, initial concentration, contact time and adsorbent dosage. The adsorbent have been characterized by SEM, XRD and BET analysis. The kinetic models including pseudo-first-order and pseudo-second-order with Langmuir and Freundlich isotherm models were applied to investigate the kinetic and isotherms parameters. Findings The adsorption of ACT increased to around 95% with the increase of nanosilica concentration to 30 g/L. Moreover, the adsorption process of ACT follows the pseudo-second-order kinetics and the Langmuir isotherm with the maximum adsorption capacity of 609 mg/g. Practical implications This study provided a simple and effective way to prepare of nanoadsorbents. This way was conductive to protect environmental and subsequent application for removal of emerging pollutants from aqueous solutions. Originality/value The novelty of the study is synthesizing the morphological and structural properties of nanosilica-based adsorbent (specific surface area, pore volume and size, shape and capability) and improving its removal rate through optimizing the synthesis method; and studying the capability of synthesis of nanosilica-based adsorbent for removal of ACT as a main emerging pharmaceutical water contaminant.


2019 ◽  
Vol 9 (2) ◽  
pp. 102-115
Author(s):  
Hanane Essebaai ◽  
Ilham Ismi ◽  
Ahmed Lebkiri ◽  
Said Marzak ◽  
El Housseine Rifi

Highly efficient low-cost adsorbent was applied for copper (II) ions uptake from aqueous solution. Characteristics of natural adsorbent were established using scanning X-ray diffraction (XRD), X-ray fluorescence, electron microscope (SEM) and Fourier Transform Infra-Red (FTIR). Various physicochemical parameters such as contact time, initial copper(II) ions concentration, adsorbent dosage, pH of copper (II) ions solution and temperature were investigated. The result showed that the adsorption of copper (II) ions by natural clay was favorable at pH=5,5. The adsorption was found to increase with increase in initial copper (II) ions concentration, and contact time. Equilibrium adsorption data were fitted using three isotherms and kinetic data tested with four kinetic models. Freundlich isotherm best described the adsorption of copper (II) ions onto utilised clay, the maximum monolayer adsorption capacity (qmax) was 8 mg/g. Pseudo-second-order model best described the kinetics of the adsorption process. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that copper (II) ions adsorption was spontaneous (ΔG°<0) and endothermic (ΔH°>0).


2010 ◽  
Vol 61 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Y. F. He ◽  
F. R. Li ◽  
R. M. Wang ◽  
F. Y. Li ◽  
Y. Wang ◽  
...  

Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb2 + ] = 500 mg L−1, [XBent] = 2 g L−1, pH = 5.0; oscillating 60 min under 200 rpm at 25°C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions—XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
A. Battas ◽  
A. El Gaidoumi ◽  
A. Ksakas ◽  
A. Kherbeche

Our research aimed at the removal of nitrate ions through adsorption by local clay. A series of batch experiments were conducted to examine the effects of contact time, adsorbent characteristics, initial concentration of nitrate, pH of the solution, concentration, and granulometry of adsorbent. Adsorption isotherms studies indicated that local clay satisfies Freundlich’s model. The rate of reaction follows pseudo-second-order kinetics. Local clay successfully adsorbs nitrates at pH acid. The adsorption capacity under optimal conditions was found to be 5.1 mg/g. The adsorption yield increases with adsorbent dose and decrease with initial concentration of nitrate. The local clay was characterized by the X-ray fluorescence method (XRF), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), scanning electronics microscopy (SEM), and measurement of specific surface area (BET). The results of the study indicated that local clay is useful materials for the removal of nitrates from aqueous solutions which can be used in water treatment without any chemical modification.


2016 ◽  
Vol 6 (4) ◽  
pp. 544-552 ◽  
Author(s):  
H. Godini ◽  
F. Hashemi ◽  
L. Mansuri ◽  
M. Sardar ◽  
Ghasem Hassani ◽  
...  

The present paper aims to investigate water purification of phenol by walnut green hull adsorbent. The surface characteristics of the adsorbent were studied using Fourier transform infra-red (FTIR), scanning electron microscope, and X-ray diffraction (XRD) techniques. The presence of functional groups such as hydroxyl and carbonyl onto walnut green hull surface was proved by FTIR analysis. Also quartz, cellulose and hematite were detected in the XRD analysis of samples by an X-ray diffractometer. The maximum sorption was achieved at pH 4.0. Data were evaluated for compliance with the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The results indicate that the data for adsorption of phenol onto walnut green hull fitted well with the Langmuir isotherm. The maximum adsorption capacity of the adsorbent was achieved by Langmuir isotherm 17.8 mg g–1. Also, the adsorption kinetics of phenol on the adsorbent were studied. The rates of sorption were found to conform to pseudo-second-order kinetics with good correlation.


2020 ◽  
Vol 15 (3) ◽  
pp. 812-825
Author(s):  
Nadia Boudouara ◽  
Réda Marouf ◽  
Jacques Schott

Abstract Bentonite samples collected from M'Zila of Mostaganem (Algeria) were treated in first protocol with sulfuric acid at concentrations 1, 3 and 6N. The second protocol concerns the acid attack of bentonite combined with thermal treatment at temperatures of 100 and 200 °C. The obtained adsorbents were characterized by different analyses techniques such as chemical composition, X-ray diffraction (XRD), specific surface area and pHPZC. The modified bentonites were used for removal of Chlorothalonil (Chl) from aqueous solution. The adsorption behavior of the pesticide was studied under different experimental conditions of pH, contact time, concentration of Chl and temperature of solution. The adsorption of Chl followed pseudo-second order kinetics and was described by the Freundlich equation. Thermodynamic study revealed that Chl adsorption was endothermic and physical in nature.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


2021 ◽  
Vol 8 (3) ◽  
pp. 234-241
Author(s):  
Paulina Taba ◽  
Mutmainnah Mutmainnah ◽  
Yusafir Hala

Mesoporous silica with cubic structure (MCM-48) was synthesized using Ludox HS40 as silica source and cetyltrimethylammonium bromide (CTAB) as a template. MCM-48 was used to adsorb the antibiotic of tetracycline hydrochloride. An X-ray diffractometer observed the x-ray diffraction pattern of MCM-48 and functional groups observed by a Fourier Transformed Infrared (FTIR) spectrometer. Parameters used to study adsorption were contact time and concentration. The pseudo-second-order was the kinetic order that fitted well with the adsorption of tetracycline HCl. The adsorption of tetracycline HCl on MCM-48 followed the Freundlich isotherm with the adsorption capacity of 0.98 mg/g.


Molekul ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 28
Author(s):  
Mohammad Jihad Madiabu ◽  
Joko Untung ◽  
Imas Solihat ◽  
Andi Muhammad Ichzan

The research aims to investigate feasibility eggshells as potential adsorbent to remove copper(II) ions from aqueous solution. Eggshells powder was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Effect of copper(II) initial concentration, adsorbent dosage, and contact time have conducted. The optimum adsorption condition obtained when 0.7 g eggshells applied to 50 mg/L copper(II) solution for 50 minutes. The maximum percentage of copper(II) removal was exceeded more than 85%. Langmuir and Freundlich isotherm model were applied to describe the equilibrium adsorption. Copper(II) kinetics sorption process was fitted to pseudo-second order model with a rate constant equal to 0.516 g/mg.min. The results clearly exhibit that eggshells powder can be effectively used to remove copper(II) ions from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document