Effect of Manifold Geometry on the Physical Performance of the Hydroentangled Nonwovens

2011 ◽  
Vol 332-334 ◽  
pp. 1291-1294
Author(s):  
Xiang Qin Wang ◽  
Xiang Yu Jin ◽  
Qin Fei Ke

In this paper, two kinds of hydroentangled nonwovens made from the same raw materials and process but different high pressure manifolds is tested to investigate the effect of manifold geometry on the physical performance of products. The results show that the sample treated by slot type manifold has better properties, which has higher hydroentanglement intensity and better abrasion resistance, but no big difference with the pore size distribution. The results are in good agreement with our previous simulation data.

1998 ◽  
Vol 48 ◽  
pp. 181-189 ◽  
Author(s):  
S. Kapur ◽  
N. Sakarya ◽  
E. A. Fitzpatrick ◽  
M. Pagliai ◽  
G. Kelling ◽  
...  

AbstractThe study of İznik ceramics of different periods revealed that temperatures of about 800–900°C were produced during firing. Glass fragments added to the body for strengthening resulted in the formation of fibrous minerals as clusters in the pores and protruding in the glaze together with Ca and P rich minerals in the raw materials used. The pore size distribution of the pores indicates a uniform temperature rise and fall during the production of the microstructure.


2010 ◽  
Vol 105-106 ◽  
pp. 23-26
Author(s):  
Juan Wu ◽  
Dao Yuan Yang ◽  
Kai Zhu ◽  
Rui Zhang

Mullite- corundum ceramic was fabricated using bauxite and silica fume as raw materials by gel-casting process. The fluidity of the slurry, as well as strength, apparent porosity, pore size distribution, phase composition and microstructure of sintered specimen were studied. The results showed that: the slurry had low viscosity, good fluidity for casting if pH=9, dispersant 0.33wt% and solid content 60vol%; the strength of material came up to 165MPa even if the apparent porosity was about 30%; the samples were characterized by mullite 70%, corundum 22%, rutile 3%, glass phase only 5%, the size of majority grains was about 2μm, and most crystals with high melting point bonded directly; the average aperture was 264nm, the pore size distribution were divided into 2~30nm, 45~60nm and 1500~4000nm three regions. The distribution probability of nano- aperture was the largest, the volume of micron -aperture was the maximum, but all pores were less than 4μm in diameter, which suggested that the materials had micro porous characteristics. The microcrystalline, crystals combined directly and micro porous structure leaded to high strength of the refractory materials together.


2014 ◽  
Vol 534 ◽  
pp. 53-62
Author(s):  
Zheng Hong Tian ◽  
Xiao Dong Wang

Controlled permeability formwork liner (CPFL) is the functional material similar to nonwoven fabrics and its filtration and drainage performance is dominated by the pore size distribution (PSD) of matrix. In this paper, suction table method, generally used to measure soil pore diameter, is improved for testing PSD of CPFL and experimental data was compared to the results from four other normal experimental methods, i.e., wet sieving method, bubble point method, mercury intrusion porosimetry (MIP) method and image analysis. The comparison indicates that PSD of CPFL obtained from suction table show good accuracy and repeatability. Furthermore, a modified mathematical model derived from Rawal model and Fature model is proved to be suitable for determinating PSD of the matrix of CPFLwith bilayer structure, and have a good agreement with the experimental data from suction table.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ludovica Casnedi ◽  
Ombretta Cocco ◽  
Paola Meloni ◽  
Giorgio Pia

An intermingled fractal units’ model is shown in order to simulate pore microstructures as pore fraction and pore size distribution. This model is aimed at predicting capillary water absorption coefficient and sorptivity values in cement pastes. The results obtained are in good agreement with the experimental ones. For validating this model, a comparison with other procedures has been shown. It is possible to establish that the newly proposed method matches better with the experimental results. That is probably due to the fact that pore size distribution has been considered as a whole. Moreover, even though the proposed model is based on fractal base units, it is able to simulate and predict different properties as well as nonfractal porous microstructure.


2015 ◽  
Author(s):  
◽  
Elmar Dohnke

The commercialization of hydrogen-powered fuel cell cars, with their environmentally friendly emissions, provides an opportunity to replace current gasoline powered vehicles. The main drawback of hydrogen as a fuel is the low density at ambient temperatures. The gas needs to be compressed to high pressure or kept under cryogenic temperatures to achieve reasonably long driving ranges. These obstacles can be overcome if the tanks are filled with a porous material that adsorbs a high volume of hydrogen. Many materials are put forward for this purpose, such as metal organic frameworks (MOFs) and engineered carbon nanospaces (synthetic carbon). To get a better understanding of the materials performance, an attempt was made to analyze the properties of the adsorbed hydrogen film. High pressure hydrogen isotherms at cryogenic temperatures (77 K, 50 K) have been studied to estimate adsorbed film properties such as density and thickness. Furthermore, how isosteric heat of adsorption, surface chemistry, and pore size distribution affect the adsorbed film has been investigated. At supercritical temperatures and high pressures, a film density 20% higher than liquid hydrogen at 1 bar and 20 K was obtained. These densities are independent of the isosteric heat of adsorption or pore size distribution. The adsorbed film densities behave similarly for all carbon-based surfaces at 77 K. Additionally a new method was developed to estimate specific surface areas of gas storage materials from high pressure isotherms and tested against the BET theory. The new method does not require knowledge of the packing fraction or cross-sectional area of an adsorbed molecule in the film. In most cases the new method leads to surface areas comparable to those found using BET theory if cryogenic high pressure isotherms are used. A new manometric (Sieverts type) adsorption instrument was designed and test, capable of measuring sub- and supercritical hydrogen isotherms at high pressure.


2018 ◽  
Vol 163 ◽  
pp. 06002 ◽  
Author(s):  
Naim Sedira ◽  
João Castro-Gomes

Blends of Tungsten mining waste mud (TMWM) and brick waste powder (BP) with different dosages were used as precursors for the study of a new binder obtained by alkali-activation. The synthesis was obtained at 60ºC curing during the first 24 hours and at 20°C during the remaining period. A combination of sodium hydroxide (SH) and sodium silicate (SS) solutions was used with SS/SH weight ratio equal 1.5. The solid precursors/liquid activators weight ratio equal to 4. And the modules SiO2/Na2O increase with the increasing of BP dosages 5.21 and 5.59 for dosages 10% and 50%, respectively. Mineralogical characterisation of raw materials was carried out by X–ray diffraction (XRD). The effect of the dosage of BP on the compressive strength and pore size distribution of the new binder was investigated from 24 hours up to 28 days. The pore size distribution was obtained mercury intrusion porosimetry (MIP). The increase in the dosages of BP, between 10 to 50%, was followed by an increase in compressive strength, from 25 to 59 MPa, for all the tested ages. The binder matrix become more dense and compact with the gradually increase of BP dosages, as found out by MIP.


Sign in / Sign up

Export Citation Format

Share Document